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MODELING MULTISTRATEGY LEARNING AS A DELIBERATIVEPROCESS OF PLANNING IN KNOWLEDGE SPACE

PRINCIPAL INVESTIGATOR:

Dr. Ashwin Ram
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Phone: (404) 894-4995
Fax: (404) 894-5041

E-mail: ashwin@cc.gatech.edu.-J
Web: http://www.cc.gatech.edu/faculty/ashwin/

1. Overview

The focus of this research is a novel approach to machine learning which models learning as a
goal-driven, deliberative process that uses introspection about reasoning failures to guide the
planful selection and construction of learning strategies. The specific goal of this research is to
encompass traditional case-based, explanation-based, and multistrategy learning approaches
within a unified framework. Using this framework, agents operating in an environment can
analyze their informational needs and strategically pursue those needs by constructing
knowledge plans from a library of available learning algorithms and executing those plans.
"Planning to learn" is closely related to the process by which agents analyze their physical needs
and plan and act in the external environment. Our research has yielded a framework for
explicitly representing reasoning to facilitate the detection of reasoning errors, a taxonomy of
error types, a learning strategy selection algorithm to remedy various kinds of reasoning errors, a
planning system which prevents learning actions from interfering with each other, and a case-
base opportunistic controller that interleaves planning and plan execution in a dynamic, real-time
resource-constrained environment.

2. Highlights

Our research has had an extensive impact on the machine learning community. We have
published several papers in books, journals, and conferences based on the research described
herein. Our Goal-Driven Learning book (Ram & Leake, 1995), was a major work that arose in
part out of the ideas developed in this project. In addition, our approach has also been the basis
for past and current dissertation projects by students outside the research group, such as Quilici's
model of Unix users (in press), Redmond's model of learning via apprenticeship (1990, 1992).
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and Fox's model of learning memory search strategies (1995). The pervasive influence of our
approach reflects the active and wide-ranging nature of our efforts. Here are the major highlights
of the research we have conducted.

Theoretical Issues

Specific theoretical contributions have been described in our annual reports; here, we summarize
the main points.

"* While our previous research focused on combining available learning actions, little attention
was paid to the choice of learning actions themselves. We have learned that in order to
develop a general theory of learning, it is important to understand the "primitives" of
learning, that is, to develop a principled theory of the learning actions involved in acquiring
and transforming knowledge.

"* Previous research showed the need for non-linear planning in multistrategy learning systems,
but we discovered several important differences between traditional planning and knowledge
planning. For example, knowledge planning requires:

" The ability to plan with incomplete information. E.g., the postconditions of a learning
operator might not be known. Indeed, all postconditions may not be representable in
the traditional "add-list" and "delete-list" formalism.

" The ability to react opportunistically to unexpected situations. These opportunities
may be external (e.g., a magazine article may provide information relevant to a prior
learning goal) or internal (e.g., a situation may trigger an unexpected reminding).

" The ability to deal with knowledge-level interactions that are somewhat different
from the interactions found in physical plans. E.g., the familiar "brother-goal-
clobbers-brother-goal" interaction in the physical world manifests itself ven,
differently in the mental world. Understanding the task of knowledge planning. and
developing a general method and supporting representations for this task. is a key
objective of this project.

" While our previous research focused primarily on the learning process itself, learning is
tightly integrated with reasoning and memory. We have proposed a theory of learning
situated in a larger theory of agency which specifies not only the learning system but also the
reasoning and memory systems and their interactions.

Technical Highlights

" We developed a multistrategy learning system called Meta-AQUA (Cox, 1996; Ram & Cox.
1994) that learns by reading stories. Meta-AQUA determines its own learning goals by
analyzing its successes and failures at its task, and creates learning plans to achieve its
knowledge goals; this allowed it to combine multiple learning strategies in a dynamic and
flexible manner. Meta-AQUA is the first computer system that we know of that is able to
create its own learning plans dynamically.

" We produced another multistrategy learning system called Meta-TS (Ram, Narayanan. &
Cox, 1995) that models the performance of human troubleshooters on the assembly line of an
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actual electronics manufacturing plant near Atlanta, using actual data from field studies. We
showed that Meta-TS can model how human troubleshocters gradually improve their
performance through experience.

" We developed a multimedia training and aiding systems for human troubleshooters, based on
the theoretical results of the Meta-AQUA and Meta-TS projects. The cognitive theory of
learning that we are developing was used to guide the design of the training and aiding
system. The principle behind this project is that once we understand how people learn, we
can use that understanding to design systems that can facilitate that learning process. The
computer system, called WALTS (Minsk, Balakrishnan, & Ram, 1995) , is a multimedia
workspace for aiding and training troubleshooters in an engineering domain. It will be fielded
in the next few months for evaluation purposes.

"* We constructed the NICOLE system (Ram & Francis, 1996): a case-based adaptive planner
using asynchronous and opportunistic memory retrievals. NICOLE demonstrates how an
planning agent situated in a real-time environment may need to quickly retrieve a less-than-
perfect plan under time pressure, but may retrieve and merge additional plans as execution
progresses. In addition, NICOLE is capable of exploiting unforeseen opportunities that
appear during plan execution.

" The PLUTO system is our latest attempt in the effort to apply the power of planning to the
task of learning. The current implementation of PLUTO is a simple proof-of-concept
system, similar the original blocks word planners. However more ambitious versions of
PLUTO are already under development.

3. The Problem: History and Issues

We have addressed two problems that are crucial in the design of intelligent agents. First.
because the value of learning depends on how well the learning contributes to achieving the
learner's goals, the learning process should be guided by reasoning about the information that is
needed to serve those goals. Thus, computer programs need to be able to make good decisions
about when and what to learn, about which algorithms to use to achieve the desired learning, and
how to guide the application of the chosen strategies. Secondly, because the domains we are
dealing with are dynamic and not completely understood, it is unlikely that a single prior
experience or case in the agent's memory will be able to provide the necessary guidance to deal
with a novel situation. Thus, computer programs need to be able to retrieve multiple cases,
extract relevant pieces of these cases depending on the problem at hand, and dynamically
combine these cases to create a solution to the new problem.

The research led us to consider three additional issues. First, while an introspective multistrategy
learning system can incorporate arbitrary learning mechanisms, the size and computational
power of these learning mechanisms is an open question. In contrast to a traditional multistrategy
learning approach (in which a system has access to large, monolithic learning mechanisms like
CBR and EBG, which themselves are fixed) we hypothesized that high-level learning behaviors
emerge from the composition of appropriately chosen low-level operations (called by Michalski
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(1993) knowledge transmutations). We call this the granularity of learning problem. Second is
the problem of deciding how to learn: an introspective multistrategy learning system chooses
which learning algorithms to apply through a process similar to planning; we hypothesized that
this process could be extended to encompass the more complex planning processes used during
the course of traditional planning and acting "in the world". Finally, decomposing high-level
learning algorithms requires not only a representation language for knowledge transmutations
but also an overall agent architecture (specifying representation language, processing
assumptions, and control structures) which support a wide range of learning operations operating
in concert with reasoning; we call this the architecture for learning problem. A solution to these
three problems would constitute a novel general learning method, which would be of great
benefit to learning and artificial intelligence research.

4. Our Solution: Strategy and Results

The funds provided by AFOSR were used to tackle and provide novel solutions to each of these
problems. Our solutions came in the form of three separate but related bodies of work:
introspective multistrategy learning, experience-based agency, and transmutation-based
inference. The first key contribution of this research is the development of a new theory of
learning, known as introspective multistrategv learning, in which the reasoning system models
its own reasoning processes explicitly, and analyzes this model after a reasoning experience in
order to identify what it needs to learn and to select the appropriate learning strategy from a set
of available strategies. Self-modeling is accomplished using knowledge structures known as
meta-explanation patterns. The system is able to identify its information needs-called
knowledge goals-and pursue the necessary learning using multiple learning methods---called
introspective multistrategy learning.

The second key contribution is the development of a new method for case-based reasoning.
called experience-based agency, which specifies how a resource-bounded agent can deal with
problems in the real world. The real world presents several challenges: it is dynamic,
unpredictable, and independent, poses poorly structured problems, and places bounds on the
resources available to agents. Our theory specifies how an agent with the ability to richly
represent and store its experiences could remember those experiences with a context-sensitive.
asynchronous memory, incorporate those experiences into its reasoning on demand with
integration mechanisms, and usefully direct memory and reasoning through the use of a utility-
based metacontroller. The principles of this architecture extend beyond case-based reasoning to
provide support for other learning mechanisms as well.

Our final key development is a framework for flexible learning called transmutation-based
inference (or planning to learn) which specifies how an agent can satisfy its knowledge goals by
composing low-level knowledge transmutations into high-level learning plans. Thus we provide
a mixed approach to the granularity of learning: we developed a representation language for fine-
grained knowledge transmutations in terms of production rules which operate over a knowledge
base; yet these knowledge transmutations share the structure of traditional planning operators, so
a system can decide how to learn by constructing plans using a wide range of planning processes.
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These large-grained knowledge plans can be viewed as full-fledged learning algorithms, or as
"macro" transmutations to be further composed into larger plans.

This work thus not only builds on our prior work in multistrategy learning, but also serves to
unify our work in story understanding, knowledge representation, planning, learning and case-
based reasoning into a cognitive architecture capable of reasoning, acting - and learning - in a
wide range of domains. The enclosed technical reports provide more details on our methods and

results; here, we summarize our research by presenting the underlying computational
justifications of our theory and highlighting the important innovations that resulted in our work.

5. Technical Details: Theory

A central thesis of this research is that a reasoner must explicitly represent and remember the
steps it takes on the way to a solution to a problem. This trace becomes essential when a failure
occurs and the reasoner must diagnose and repair the failure. In Meta-AQUA, the Meta-XP
holds these data. In order to adequately analyze the trace, a taxonomy of failure types provides
the vocabulary needed to move to the next step: planning to learn.

_ ~LACUS rfailure

Agent Knowledge External Objects
Agent Processes Physical Cau'saton

Novel Missing Missing Missing Missing Forgotten Mfissine
Situation Association Behavior Heuristic Goal Goal Input

Bad Domain Erroneous Flawed Flawed Poor Poor

Knowledge Association .Behavior Heuristic Goal Prioritv
SCorrect Correct Correct Correct Correct Correct Correct

Knowled e Association Behavior Choice Goal Association In ut

Figure 1: A taxonomy of learning failures.

If reasoning is modeled as goal-directed processing of an input using some knowledge, there is
only a limited number of classes of factors that may be responsible for the success or failure of
the reasoning process. A failure could stem from the goal, the process, the input, or the domain
knowledge. Furthermore, if both knowledge and sets of reasoning strategies are organized in
order to facilitate access to them, so that appropriate knowledge and strategies can be retrieved
and brought to bear on a given situation, the organization of knowledge and reasoning strategies
may be responsible for a failure as well. Finally, failures may arise 'from the generation,
selection, and opportunistic triggering of goals as well.



Even if no failure has yet occurred, anticipation of a reasoning failure may trigger learning. For
example, a reasoner may realize that it cannot perform a task and decide to perform the
necessary learning before even attempting the task. In our framework, all these motivations for
learning-reasoning failures, difficulties, impasses, suboptimalities, surprises, and other types of
processing problems or anticipated processing problems-are collectively and simply referred to
as failures. Reasoning processes and reasoning failures are represented using the Meta-XP
representations that we have developed.

Once the reasoning faults have been identified, learning strategies that remedy the faults can be
deployed. But certain learning strategies have ordering constraints. If these constraints are
violated, the benefits of one or more of the learning strategies may be lost. It is necessary to
represent the dependencies between learning strategies, and produce a partial ordering of the
strategies that satisfies the dependencies. The act of producing a partial ordering of steps is the
act of planning.

Planning to act in the world and planning to learn from some internal mental representation share
deep and significant similarities. Thus, Meta-Aqua employed a conventional planning system,
NONLIN, to determine a partial ordering of the learning strategies to be applied such that these
learning strategies did not interfere with each other, as they might do if their order of execution
was undefined.

Recently, we have become interested in the power of planning to learn at lower levels of
abstraction. Meta-Aqua planned at the level of learning strategies, which themselves are highly
regimented plans that achieve ambitious goals in limited domains. However, it is possible to
represent the underlying primitive operations that comprise learning strategies. We use
Michalski's (1993) term "transmutations" to describe these generic operators. A more advanced
planning to learn system could assemble customized learning strategies from transmutations on
the fly, potentially creating a far larger domain of solutions. In the final stage of this project, we
have built a prototype of such a system, PLUTO, and are continuing to develop it further.

5.1. Knowledge Representation for Learning Systems

Traditional monolithic learning algorithms require special-purpose knowledge representations in
order to function; CBR requires a case library, while EBG requires structured representations and
a domain theory. Systems that design their own learning strategies do not have this luxury, since
planning to learn is a general method operating over a knowledge base which can approximate
CBR or EBG as needed, it is important to design a general representation language which is
useful enough to support a wide range of tasks, yet is rich enough to serve as a base for the
planning to learn process.

Appropriate knowledge representation has been a constant thread in our research, from our initial
work with the AQUA system through our current work in the NICOLE and PLUTO systems. A
general knowledge representation should have enough expressive power to represent concepts in
a wide range of task domains, should have a well-defined semantics to permit complex reasoning
operations, and should support a powerful set of operations to manipulate the knowledge to
promote the construction of complex algorithms. After extensive experimentation in the
NICOLE and PLUTO systems, we hypothesize that a multi-view, grounded relation-based
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knowledge base meets these criteria. Since this knowledge base contains" experiential knbwledge
as well as the more traditional semantic knowledge, it is called an "experience store".

The basic unit of this knowledge base is the concept, which are connected by links mediated by
relations. Each instance of a relation is a tuple of the form (<relation> <domain> <codomain>):
for example, an instance of the ISA relation might be (ISA TWEETY BIRD). In addition, certain
privileged concepts are grounded in this representation. by connection to nonconceptual
processes: for example, the cost of a stereo might be represented by (COST SONY-5 150.0-
CONCEPT), where 150.0-CONCEPT cashes out into a machine representation which can be
manipulated by subcognitive arithmetic operations. Finally, a relation-based knowledge base
can be viewed in several equivalent ways, each supporting different types of processing: as a set
of predicates (tuples), as a semantic network (where each relation is a directed, named link
connecting two nodes) and as a traditional frame representation (where all knowledge related to a
specific concept is extracted from the knowledge base); Figure 1 shows these three views.

(ISA TWEETY BIRd)
(COLOR TWEETY YELLCW)

(FRAME TWEETY
ISA BIRD

COLOR COLOR YELLOW)

Figure 1. Three equivalent views of a relation-based knowledge representation:
semantic net (left), predicate (tuple) notation (upper right), and frame notation (bottom

right). From the PLUTO 2.0 specification.

We extensively tested this combination of low-level representation and high-level structure for
suitability as a general knowledge representation system in the NICOLE agent architecture.
which was used to construct the knowledge representation for the ISAAC (Moorman & Ram.
1994) and NICOLE-MPA (Ram & Francis, 1995) systems. However, we have extended this
representation to support planning to learn in the PLUTO system in two specific ways: first.
elements of tuples can be variablized; second, we have developed a standard language for
creating and matching variablized templates. Together, this representation and these extensions
allow us to specify not only complex knowledge relating to a wide variety of tasks, but also
specify in a principled way gaps in that knowledge. This is the fundamental construct we use to
represent both knowledge goals and knowledge transmutations.

5.2. Selecting and Integrating Learning Strategies

5.2.1. Knowledge Goals and Learning Strategies

Knowledge goals (KGs) are explicit representations of gaps in a reasoner's knowledge base.
These can be represented as sets of tuples where one or more elements are variables (by
convention, written with a initial question mark: e.g., ?X). So for example, the canonical
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"Marvin Minsky's phone number" knowledge goal might be defined by the tuple (PHONE-
NUMBER MARVIN-MINSKY ? X) where ?X represents a placeholder of the information to be
learned. In addition to this knowledge specification, the representation of a knowledge goal must
also represent the task specification, a declaration of the suspended task that is awaiting the
information that is being sought.

A knowledge goal, however it is produced, represents a challenge; once a gap has been found in
the reasoner's knowledge base, to satisfy the goal the reasoner must have some mechanism for
filling the gap. The basic unit of reasoning for a planning to learn system is a learning operator:
a package of knowledge and/or processing elements that take various kinds of knowledge as
input and produce new or rearranged knowledge as output, represented as a planning operator.

5.2.2. A Sample Learning Operator: Abstraction

In order to be able to reason about, select, and combine learning strategies in this manner,
whether these are full-fledged machine learning algorithms or primitive knowledge
transmutations, it is necessary to represent their applicability conditions and expected results in a
declarative and explicit manner. This has a nice methodological benefit as well: it requires us to
write down explicitly the conditions under which the learning algorithms we invent ought to be
applied. In our previous research, we developed a formalism similar to the "preconditions add-
list/delete-list" notation used in conventional non-linear planners for physical operators. For
example, the figure below shows a representation of "abstraction", in which a concept in a frame
system is generalized up the relation hierarchy.

-k Omr 1, i 12 ~ v2.tp %To)AU 6 A
•, w." t:6 •,o-V- e•-r, ý4 :A

Figure 2. The Abstraction Operator

Note that this formalism specifies the effects of a learning operator using "assert" and "delete"
clauses. This will probably be inadequate for more sophisticated learning operators; for example.
"analogical mapping" results not only in the addition and deletion of facts but in the mapping of
the entire structure of a model from the source to the target concept. Some operators may not
have well-defined postconditions at all; for example, "read a magazine article" results in the
acquisition of knowledge which is unspecified. Developing a suitable taxonomy of learning
actions, and a suitable representational formalism for these actions, has been and will continue to
be a key thrust of this research.
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5.3. Integrating Learning Strategies within a Complete Reasoning System

A planning to learn system is only as good as the source of its inputs (the source for its
knowledge goals) and the receiver of its outputs (the executive of its knowledge plans). Our goal
for this research is not just to employ appropriate learning strategies, but to integrate them with
the type of failure-driven trace analysis of the performance system. In Meta-AQUA and Meta-
TS, we have shown that such an introspective analysis is not only feasible but also beneficial. In
NICOLE, we have shown that reasoning, acting, introspecting, and learning can be integrated
into a closed cycle, serving as a complete cognitive architecture based on planning to learn
principles.

5.3.1. Why Planning, Knowledge Planning and Execution Must Be Integrated

There is a tight coupling between physical planning, knowledge planning, and execution. As
John Pollock has pointed out (1995), achieving a knowledge goal may require the execution of
arbitrarily large numbers of actions (for example, verifying the existence of the neutrino required
a large multi-year research effort), whereas achieving a physical goal may require arbitrarily
large amounts of knowledge and reasoning (for example, getting to the moon required a lot of
brainwork on the part of NASA, even though the basic physics they tackled had been largely
worked out). Furthermore, both types of goals may require interleaving planning and execution
(for example, before plans for a novel space probe can be completed, it may be necessary to
experiment with different materials to see which best fit the design goals, and the properties of
the materials will affect the design). Thus, to achieve any goal, we may have to plan for
knowledge, we may have to plan for action, and we may have to execute an action - all
concurrent, interleaved, and inextricably intertwined.

5.3.2. How Planning, Knowledge Planning and Execution Can Be Integrated

It is a difficult problem to control a system that combines several learning strategies, much less
the many non-learning task duties required of a performance system (such as user interaction.
memory, planning, or real-world execution), especially when the strategies (and actions) must be
composed into a unified plan for action. However, one of the major goals of this research is to
design a control architecture capable of doing precisely that. As part of this research project, wve
have developed a control architecture based on the experience-based agency theory.
implemented in the NICOLE system. An experience-based agent has five layers: a task
controller, a unified knowledge representation language, a unified long term memory called an
experience store (based on the same principles of general-purpose, multi-view relation-based
knowledge used in our planning to learn work), a working memory shared by all tasks in the
system, and an asynchronous memory retrieval system (a privileged task that interlocks with the
other four components of the system).

From the perspective of integrating reasoning and action, the key element of an experience-based
agent is a task controller capable of concurrently orchestrating the activity of several subsystems
- for instance, an asynchronous memory module and a knowledge planner. The task controller
combines results from task-decomposition systems, reactive systems, blackboard systems, and
operating systems theory. Like Jim Firby's RAPs (1989) and Roy Turner's SBR (1989), tasks are
decomposed into two parts: low-level executable actions that can be directly executed by the
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system, and high-level declarative specifications which can be explicitly parsed by an interactive
interpreter. This breakdown imposes a hierarchical task decomposition upon the basic actions,
yet allows the specifics of execution to be determined at run-time. Furthermore, it allows the
control of both low-level reactive components and high-level reasoning components within a
uniform framework.

An experience-based agent goes beyond RAPs and SBR in two specific ways: task
communication and utility-based control. The primary organizing structure for execution
knowledge is the supertask (which we developed in our lab under a separate project), a
declarative specification of the knowledge and subtasks necessary to perform some cognitive
task. A supertask defines both the working memory structures that a cognitive task uses for
communication (implemented in the NICOLE system as a blackboard pane) and the set of top-
level subtasks which must be active for the task to be performed. Given a set of supertasks, an
experience-based agent constructs a global working memory structure from the supertask
specifications and then concurrently executes the subtasks that the supertasks define.

But we need more than concurrent execution of tasks - sometimes it is necessary to choose
between more than one learning method, or between attempting to perform a learning action and
responding to the user or external events in a timely fashion. An experience-based agent allows
utility-based competition between tasks, where two tasks (or hierarchical sets of tasks) compete
for the right to execute, based on utility values computed by functions attached to the task
specifications.

5.3.3. An Integrated Agent Architecture for Learning

We are now in a position to explain how our theories of learning fit into the context of a
complete agent architecture. Given some agent functioning in a environment or performing
some performance task, an introspective task (such as that implemented in our Meta-AQUA
system) can trace reasoning episodes, analyze failures, and detect opportunities to learn in the
form of knowledge goals. A planning to learn system (such as PLUTO) can analyze these
knowledge goals and construct knowledge plans (which themselves may be composed from past
knowledge plans retrieved from memory). Execution of these knowledge plans can be
orchestrated by an overall agent architecture (such as Nicole) which interrupts the performance
task with knowledge plans as necessary. Figure 4 illustrates the operation of this architecture.
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Figure 5. Planning to Learn as part of an overall Cognitive Architecture

We have separately implemented a version of the PLUTO system, the Meta-AQUA system. and

the overall Nicole agent architecture (shown in gray). Integration of these components into an
overall system that can function intelligently in a complex, dynamic world and learn from its
experiences using multiple learning strategies will be completed as part of a future research
project.

6. New Domains for Learning

To show that our theories have generality beyond any one domain, or for only a few hand-coded
situations, we have deployed our theories into diverse, complex domains. Meta-AQUA reads
simple natural language stories and learns from them. Meta-TS models human troubleshooters
on an electronics assembly line. NICOLE solve planning problems. Details are provided in the
attached publications. We list below two additional domains which we have begun to explore.

6.1. Consumer Decision-Making

Consumer decision-making is a learning and information gathering process involving multiple
learning strategies. Buyers are faced with external constraints, such as how much money they
have to spend or how much time and trouble they are willing to invest to make sure that they
make a good decision. Buyers also have internal constraints: they have imperfect knowledge of
the range and availability of products, the attributes of the products such as reliability or quality,
the relevance of various attributes to their specific purpose in buying the product, and so on.
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Finally, buyers can make a many different inferences, rangingfrom explanation-based analysis of
product attributes and performance to inductive generalization over different products.

In order to incorporate a larger body of real-world data, we obtained ratings for a few dozen
models of consumer products from Consumer Reports. Using vacuum cleaner ratings, we
observed what people do when faced with learning goals identical to those faced by the PLUTO
system. Four voluntary participants viewed the Consumer Reports data in its original, tabular
form. We posed several questions to our subjects. Using a spoken aloud protocol, we traced
their reasoning processes in order to learn what sort of strategies and transformations subjects
applied to the problems. Our current prototype of the PLUTO system is aimed at modeling these
reasoning and learning behaviors.

6.2. Intelligent Teaching Systems (StatLady)

A very different application of planning to learn is in the domain of instruction. Intelligent
teaching systems (ITSs) have been a long-time area of interest for artificial intelligence
researchers. The concepts behind PLUTO are particularly applicable because to be an effective
teacher, an instructor must also be an effective learner. In order to deliver proper instruction, an
instructor must assess the skills and knowledge of his student. The instructor should know what
the student does and does not understand, and the relationship between this partial understanding
and the full level of expertise that the instructor intends to teach. Only given an accurate model
of the student's understanding can an instructor create an optimal lesson plan. The task of
gauging learner proficiency is complicated by the fact that students can learn or forget material
of their own accord. Also, excessive testing detracts from the learners' time and attention.
slowing the overall learning process. The utility of testing must be taken into account, and each
evaluation should yield the maximum amount of information relative to its cost.

This sort of intelligent student evaluation can be thought of as a special form of planning to
learn: planning to diagnose. Planning to diagnose can occur at several places. First. a new
student may require significant evaluation to construct an initial model of their competence.
Second, this model must be maintained and updated as a student learns. Third, if a student
unexpectedly fails at an advanced skill, prerequisite skills must be evaluated to find the cause of
the failure and suggest a remedy.

Last, but not least, some students use significantly different learning strategies than other
students. Discovering which strategy an individual student favors may suggest which sorts of
instruction will prove most fruitful.

6.3. Agent Simulation (PHOENIX)

It is extremely difficult to evaluate an overall cognitive architecture because systems such as
NICOLE are capable of not only combining planning, action, and learning but also exploiting the
combination for improved performance. For example, such an architecture should be able to use
the data gathered during plan execution to guide memory retrieval and to streamline explicit
knowledge planning. Unfortunately, traditional planning tasks do not allow us to exploit this
channel of communication for the simple reason that classical planning explicitly separates
planning and action, making "concurrent execution" a poorly defined concept.

12



From the machine learning side, it is easy to run individual machine learning -algorithms on
traditional datasets, but this does not tell us much about how to evaluate sophisticated
multistrategy learning algorithms which allow systems to learn not only from experience but also
during experience. In fact, few machine learning algorithms have any experiences at all, unless
they are embedded in larger systems which do something - planning, design, diagnosis, and so
on.

We believe strongly in developing machine learning algorithms in the context of intelligent
systems - systems which perform intelligent tasks in realistic environments. For this reason,
we have turned to interactive simulators, such as PHOENIX (Cohen et al. 1988), which require
both sophisticated planning and execution in realistic environments. By "realistic" we mean that
the environment possesses several key features: the world is not completely under the control of
the intelligent system; events happen in (simulated) real-time; the system is performing some
complex task; and knowledge goals arise in support of these tasks, making learning necessary in
a principled manner.

As part of this project, we have modified the PHOENIX simulator to interface with the NICOLE
agent architecture. In addition to providing a more rigorous testbed for the integration of
planning and acting in the agent architecture itself, this realistic environment provides greater
opportunities and challenges for the planning to learn component. By comparing PLUTO's
capability to devise learning mechanisms on the fly with special-purpose learning algorithms
designed to cope with the PHOENIX environment, we will be able to evaluate whether the
planning to learn paradigm will scale up to realistic tasks.

7. Conclusion

In conclusion, we have developed a computational model of learning with the following
properties: (i) learners model their own reasoning processes for the purpose of detecting
reasoning failures; (ii) a taxonomy of possible reasoning failures guides the reasoner in selecting
and combining one or more strategies from a library of learning strategies: (iii) nonlinear
planning helps the reasoner avoid the pitfalls of learning strategy; (iv) learning is a deliberative.
planful process: knowledge plans are composed through processes paralleling traditional
planning; (v) learning is integrated with reasoning: the knowledge representations and processing
structures used for learning are identical to those used in an agent's overall reasoning and acting
architectures. Our theory provides the foundation for a novel cognitive architecture for a
multistrategy learning system. We are grateful to AFOSR for providing the funding for this
research effort.

8. Publications

Our research has resulted in one completed PhD thesis (Michael Cox), one nearly-completed
PhD thesis (Anthony Francis), an edited volume (Ashwin Ram & David Leake). and several
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publications. Here is a complete list of publications produced under this grant. Copies of last
year's publications are included with this report; copies of earlier publications have been
provided with previous annual reports.
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Abstract involved with much care or investigated the nature of the role
introspection assumes when learning. The research pre-

The theory of introspective multistrategy learning sented here uses computational introspection to assist in the
proposes that three transformations must occur to learn choice and sequencing of learning algorithms within a mul-
effectively from a performance failure in an intelligent tistrategy framework. Yet open questions exist as to whether
system: Blame assignment. deciding what to learn, and introspection is worth the computational overhead and in
learning-strategy construction. The Meta-AQUA exactly what ways it facilitates the learnina process. This
system is a multistrategy learner that operates in the
domain of story-understanding failures and is designed paper begins to investigate these research questions empiri-

to evaluate this learning approach. We discuss cally.

experimental results supporting the hypothesis that
introspection facilitates learning in a multistrategy The theory of introspective multistrateg) learning
environment. In an empirical study. Meta-AQUA (IML) proposes that three transformations must occur to
performed significantly better with a fully introspective learn effectively from performance failures. First. given a
mode than with a reflexive mode in which learning trace of the performance failure, a learner must perform
goals were ablated. In particular, the results lead to the blame assignment by mapping the symptoms of the failure to
conclusion that the process which posts learning goals a causal explanation of the failure. Secondl,,. the learner
(deciding what to learn) is a necessary transformation must use this explanation to decide what to learn b\ posting
if negative interactions between learning methods are explicit learning goals to achieve desired changes in its back-
to be avoided and if learning is to remain effective. ground knowledge. Thirdly, the learner can use these goals
Moreover. we show that because learning algorithms
can negatively interact, the arbitrary ordering of for learning-strategy construction by treating the learning

learning methods can actually lead to worse system task as a nonlinear planning problem. That is. the learner
performance than no learning at all. The goals of this constructs a partially-ordered plan to repair the background
research are to better understand the interactions knowledge by sequencing calls to standard learning algo-
between learning algorithms, to determine the role of rithms. The Meta-AQUA system (Cox 1996: Ram & Cox
introspective mechanisms when integrating them. and 1994) is a multistrategy learner that operates in the domain
to more firmly establish the conditions under which of story understanding failures and is designed to evaluate
such an approach is warranted (and those under which this learning approach.
it is not).

Section 2 briefly presents the Meta-AQUA s.stem bN
describing the story generation module with which experi-

Introduction mental trials are generated and by providing a brief explana-
tion of the performance and learning tasks. Section 3

From the very early days of Ahi researchers have been con- provides a computational evaluation of the hypothesis that
cerned with the issues of machine self-knowledge and intro- introspection facilitates learning using data obtained from
spective capabilities (e.g.. McCarthy 1959; Minsky 1954/ the Meta-AQUA system. SeCtion 4 summarizes the results
1965), yet few have quantitatively evaluated the trade-offs and concludes with a short discussion.



* Met.a-AQUA emphasis on reasoning from a trace of the derivation of a
Ai solution rather than from solutions themselves. Although theM eta-A Q U A is a learning system that chooses and com binesal oi h s nd k w e ge tr c u s u ed b M t -A Umultiple learning methods from a toolbox of algorithms in algorithms and knowledge structures used by Meta-AQUA

multpleleanin mehod frm a oolox f agorthm in have been reported elsewhere (e.g., Cox 1994, 1996: Cox &
order to repair faulty components responsible for failures hav been Rer e Cox 1994 . 1996 Cox &Ram 1995; Ram & Cox 1994; Ram, Cox, & Narayanan
encountered during the system's performance task. The sys- 1

tem architecture and flow of information within Meta- 1995), this section outlines the system in order to provide a

AQUA is shown in Figure 1. The problem generation mod- context for understanding the evaluation.

ule outputs a story to the story-understanding performance
system with the initial goal to understand the input. The per- The Input: Elvis World and Tale-Spin
formance module uses schemas from its background knowl- To support large data collection, the Tale-Spin story genera-
edge (BK) to explain the story and to build a representation tion programI provides a potentially infinite number of input
for it in its foreground knowledge (FK). If this task fails, then variations that test Meta-AQUA's ability to learn from expla-
a trace of the reasoning that preceded the failure is passed to nation failure. Given a main character and a problem. Tale-
the learning subsystem. A case-based reasoning (CBR) Spin simulates the actions that would be necessary for the
(Kolodner, 1993) subsystem within the learner uses past character to achieve goals stemming from the problem. For
cases of introspective reasoning from the BK to explain the example if a character is bored, Tale-Spin assigns the char-
comprehension failure and to generate a set of learning acter an initial goal to remove the state of boredom. The
goals. These goals, along with the trace, are then passed to a character can achieve the goal by convincing a friend to play,
nonlinear planner. The planner subsequently builds a learn- finding a ball, going outside, and then batting the ball back
ing strategy from its toolbox of learning methods. The learn- and forth (see Figure 2). For each event in the story. the gen-
ing plan is passed to an execution system that examines and erator adds any associated causal results. These results
changes items in the BK. These changes enable improved change the world and enable further actions by characters in
future performance.

The above conceptualization of learning is consistent with
both Michalski's (1994) Inferential Learning Theory that 'Tale-Spin (Meehan 1981) was obtained from the UC
decomposes a learning task into an input, the BK. and a Irvine repository. Pazzani (1994) used it to evaluate the
learning goal and Carbonell (1986) and Veloso's (1992) OCCAM multistrategy learning system.

Learning Subsystem

Problem Performance Subsystem Multistrategy
Generation LearningTale Multistrategy

SInput UnderstandingGol

Meory Algorithm's,

libar Algorithm

! Learning

Execute LearningPln

Figure 1. Detailed Meta-AQUA system architecture
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the story. For example, the act of getting the ball and going arrest criminals.3 We also reprogrammed Tale-Spin to hide
outside enables the hitting of the ball which results in the the marijuana during story initialization in different loca-
ball's movement between the characters. In turn, these tions (e.g, in the cupboard, refrigerator, and under the car-
actions remove the boredom. The story terminates when the pet), so the officer's task varies depending on entry
goals and subgoals of the main character have been achieved conditions (i.e., at what point in the story the officer arrives
or when all possible plans to achieve them have been on the scene and whether the dog accompanies him), the ini-
exhausted. tial location of the pot, and the actions of the characters in the

story.

Elvis asked Lynn, "Would you push the Finally, to facilitate the performance task. we modified
ball2 to me away from you?" Lynn went to the Tale-Spin program so it generates explanations of key

the garage. She picked up the ball2. She events in the stories. The resolution of all anomalies are

had the ball2. She went to outside. He thereby incorporated within each story. For example, Tale-

went to outside. He played with the Spin includes a reason why Lynn strikes the ball in the story

ball2. She hit the ball2. She hit the above because it knows that Meta-AQUA will find the action

ball2 because she wanted to move the anomalous and thus try to explain it. Although in an ideal

ball2 to him. He hit the ball2. He hit the implementation, the understanding process should be able to

ball2 because he wanted to move the ball2 make independent inferences that confirm explanations of
to her. He played with the ball2 because the input, Meta-AQUA depends on the story to provide
he didn' t want to be bored. explanations for this confirmation. The implementation con-

centrates on the learning task rather than the understanding-- The End -- -tak task.

Figure 2. Sample Elvis World story The Performance and Learning Tasks:
Story Understanding, Explanation, and Repair
The Meta-AQUA system learns about drug-smuggling and

Among the changes to Tale-Spin, we added a musician sports activities, given its prior experience with stories about

named Elvis and a police officer to the cast of characters. terrorists and its general knowledge of physical causalitN.

Elvis is temporarily boarding with Mom. Dad and their The systems' performance task is to "understand" stories by

daughter Lynn, whereas the officer occasionally visits the building causal explanations that link the individual events

house, presumably because of neighborhood complaints of into a coherent whole. The performance sub-system uses a

loud music and raucous behavior. Furthermore, the police multistrategy approach to understandingl Thus, the top-level

officer often (but not always) brings a drug-detection dog goal is to choose a comprehension method (e.g., script pro-

along with him. We also removed Karen from the cast of cessing, case-based reasoning, or explanation pattern appli-

main characters available as a protagonist and the state of cation) by which it can understand the input. When an

hunger from the possible initial problem states. Thus, Tale- anomalous or otherwise interesting input is detected, the s\ s-

Spin now generates a more uniform distribution of situa- tem builds an explanation of the event, incorporating it into

tions. the preexisting model of the story in the FK.

We also added two new problem types to the original
problems of thirst and boredom. Characters may now be
jonesing2 for drugs. In Elvis' case, he sometimes smokes
marijuana to relieve his jones, whereas Dad occasionally 3Unlike the UC Irvine version of Tale-Spin in %hich
smokes a pipe with tobacco. Lynn has also been given a characters and their goals did not interact, we modified
tobacco habit. The police officer has the problem of being the program so that the police officer is a competing

concerned about the law. The police officer's state of being character with his own problem and goal. Because the

concerned is relieved if he can either locate contraband or officer confiscates the marijuana when found and arres
Elvis, such events may preempt the enabling conditions
of actions Elvis had planned to perform. For instance. it

Elvis is thirsty but the officer arrests him. this condition
restricts his freedom of movement so that he cannot go to

2In the vernacular, a "jones" is a drug habit accompanied the faucet for water. Therefore, the story can end with
by withdrawal symptoms. The verb "to jones" is to be Elvis still having the problem with which he began (ic.
going through a state of withdrawal. thirst).
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In the story from Figure 2 for example, Meta-AQUA Symptoms:
finds it unusual for a person to strike a ball because its con- Contradiction between input and background
ceptual definition of the "hit" predicate constrains the object knowledge
attribute to animate objects. It tries to explain the action by Contradiction between expected explanation
hypothesizing that Lynn tried to hurt the ball (an abstract and actual explanation
explanation pattern, or XP, retrieved from the BK instanti-
ates this explanation). In the following, sentence, however, Faults:
the story specifies an alternate explanation (i.e., the hit action Incorrect domain knowledge
is intended to move the ball to the opposing person). This Novel situation
input causes an expectation failure because the system had Erroneous association
expected one explanation to be true, but another proved true
instead. Learning Goals:

Reconcile input with conceptual definition
When the Meta-AQUA system detects an explanation Differentiate two explanations

failure, the performance module passes a trace of the reason-
ing to the learning subsystem. At this time, the learner needs Learning Plan:
to explain why the failure occurred (assign blame) by apply- Abstraction on concept of hit
ing an introspective explanation to the trace. A meta-expla- Generalization on hit explanation
nation (Meta-XP) is retrieved using the failure symptom as a Index new explanation
probe into memory. Meta-AQUA instantiates the retrieved Mutually re-index two explanations
meta-explanation and binds it to the trace of reasoning that
preceded the failure. The resulting structure is then checked
for applicability. If the Meta-XP does not apply correctly. Figure 3. Learning from Explanation Failure
then another probe is attempted. An accepted Meta-XP
either provides a set of learning goals (determines what to
learn) that are designed to modify the system's BK or gener-
ates additional questions to be posed about the failure. Once
a set of learning goals are posted, they are passed to the non- Computational Evaluation
linear planner for building a learning plan (strategy construc- This section presents the results of computational studies
tion). performed with Meta-AQUA to test the hypothesis that

introspection facilitates learning. The methodology below
Figure 3 lists the major state transitions that the three ntronye stso u hypothes is . T a o tmo dircty sup-

learingproesss prduc. Te larnig pan s flly not only tests our hypothesis, but also it more directly sup-
learning processes produce. The learning plan is fully prstepsto htaloeculn fbaeasgmn

ordered to avoid interactions. For example, the abstraction ports the position that a loose coupling of blame-assignment
steep musto precde itheoteractio s. Aowexampledthe dep nctn and repair (via learning goals) is preferred to a tight coupling
step must precede the other steps. A knowledge dependency approach. But perhaps more importantly. this methodology
exists between the changes on the hit concept as a result of also scrutinizes the claim that the second phase of learning.
the abstraction and the use of this concept by both generali- deciding what to learn, is necessary for effective learning.
zation and the indexing.4 After the learning is executed and IML theory is the only learning theory that makes such a
control returns to sentence processing, subsequent sentencesconcrnig th hi prdicae cusesno nomly. nstad, strong claim. Few computational systems other than Meta-
concerning the hit predicate causes no anomaly. Instead, AQUA include an explicit calculation of a goal to learn and
Meta-AQUA predicts the proper explanation:5 then use that goal to influence learning. Converging with the

arguments and hand-coded examples from previous research
that favor this position (e.g., Cox 1994: Cox & Ram 1995).

5As pointed out by an anonymous reviewer, it would he
nice for the system to use ontological knowledge to infer

4During mutual re-indexing, the explanations are that the inanimate objects cannot feel pain. At the current
differentiated based on the object attribute-value of the time, however, the system possess neither the bias to
hit. However, the abstraction transmutation changes this make a proper inductive leap during learning nor the
attribute. The generalization method applied to the new prerequisite knowledge to make the inference. Indeed.
explanation also uses this attribute. See Cox & Ram the system has but a primitive causal understanding of the
(1995) for a more complete analysis. mechanics of pain.
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this paper presents quantitative evidence that supports the explanation can directly determine the choice of repair meth-
utility of this stage. ods. System performance under both conditions can then be

compared with Meta-AQUA under a no learning situation.
The Hypothesis
Generally, we claim that introspection facilitates learning. Independent and Dependent Variables

More specifically, we assert that the rate of improvement in Learning rates relative to a baseline no-learning condition
story understanding with learning goals exceeds that of story are compared between the fully introspective and a semi-
understanding without learning goals holding all other fac- introspective version of Meta-AQUA. The independent vari-
tors constant. Our approach is to perform a kind of ablation able that effects this change is the presence and influence of
study. Surgically removing the learning goals eliminates part learning goals. The first experimental condition is referred to
of the system's mechanism responsible for introspection, as the learning goal (LG) condition, and represents Meta-
The intention of this manipulation is to show different AQUA as described in Ram & Cox (1994). Under the LG
empirical learning curves with and without introspection as condition, the system builds a learning strategy. This con-
a function of the number of inputs. struction is guided by the learning goals spawned by the

Meta-XPs that explain the failure. Hence, this condition rep-
Introspective learning is a computational process with resents a loose coupling approach between fault (failure

the decomposition as shown in the upper portion of Figure 4. cause) and repair (learning).
Full)' introspective multistrategy learning consists of exam-
ining one's own reasoning to explain where the reasoning The second condition is called the random learning
fails. It consists further of knowing enough about the self and (RL) condition. Given the explanation of the causes of fail-
one's own knowledge that the reasoner can explicitly decide ure the system can directly assign calls to particular learning
what needs to be learned. Introspection amounts to perform- algorithms for each fault. The construction of the learning
ing blame assignment and subsequently posting explicit plan is then performed by a random ordering of these func-
goals to learn. Learning amounts to the construction of a tion calls, rather than by non-linear planning to achieve the
learning plan designed to change the reasoner's knowledge learning goals. The RL condition represents a tight coupling
and thereby to achieve the learning goals.

Removing the goals from the introspective process
above, leaves a more reflexive activity we call semi-intro- 61t is
spective multistrategy learning6 (see the lower portion of i semi-introspective because, although pan of the

Figure 4). Instead of using the explanation of failure created mechics of b assinen remain. tue resech
mechanics of blame- assignment remain. Future research

during the blame-assignment phase to post a set of learning remains to test the performance with blame assignment
goals that then direct the construction of a learning plan. the removed and learning goals present.

Fail lame Causes Deciding What Goals Strategy Learning

Symptoms Assignment to Learn Construction lan

Three phases of fully-introspective multistrategy learning

Failure

Failure Blame Causes Strategy Learning

Symptoms Assignment Construction Plan

Two phases of sami-introspective multistrategy learning

Figure 4. Learning goal ablation
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approach (i.e., direct mapping from fault, or failure cause, to The Empirical Data
repair). To serve as experimental trials and to minimize order effects,

The final condition is called the no learning (NL) condi- Tale-Spin generated six random sequences of Elvis-World
tion in which Meta-AQUA performs story understanding, stories. On each of these runs, Meta-AQUA processestionin hic Met-AQA prfors S~iysequence three times, once for each experimental manipula-
but if a failure exists, the system constructs no learning strat- tion. the temes all r with ex samental coni-

egy.- Tis ondtio reresnts he aseineperormnce tion. The system begins all runs with the same initial condi-
egy. This condition represents the baseline performance tions. For a given experimental condition. it processes all of
from which both the LG and RL conditions can be comn- the stories in the sequence while maintaining the learned

pared. Holding all parameters constant except the indepen- knowledge between stories. At the end of the sequencew the

dent variables, Meta-AQUA is given input from the Tale- syste rets the Bnp s f a runcvarie
system resets the BK. The input size for a run varies in

Spin problem generator and the dependent variable is mea- length, but averages 27.67 stories per run. 7 The corpus for
sured. the six runs includes 166 stories. comprising a total of 4.884

The dependent variable must measure system perfor- sentences. The stories vary in size depending on the actions

mance (i.e., story understanding and explanation). In previ- of the story and Tale-Spin's randomness parameters (e.g..

ous research, paraphrase and question answering tasks have the probability that a character will stop throwing an object

been used as this measure (e.g., Lehnert, Dyer, Johnson, on the current toss), but average 29.42 sentences.

Yang, & Harley 1983; Schank & Riesbeck 1981; Wilensky Run Number Four. Run number four is particularly inter-
1978). If a reader sufficiently understands a body of text, the esting because the greatest number of learning interactions
reader should be able to summarize the central points of the estin because The greatet nur of ln iteriosoccur in this set. The input to run four consists of 24 stories
story and list the major events within it. If the story is well as enumerated in Table i. The stories contain a total of 715
understood, then the reader can answer questions concerning sentences, and the average number of sentences per story is
the events and relationships within the story. 29.8. Each numeric entry in Table I contains a triple of the

With story understanding programs such as BORIS form <LG, RL, NL>. For example, the sixth column repre-

(Lehnert et al. 1983), the researchers pose questions to the sents the number of learning episodes for each trial and for
each condition. Note that the third element of each triple in

system and subjectively evaluate the answers to determine th condis zose lear is dled in

text comprehension effectiveness. One can count the number

of questions answered correctly to ascertain an "absolute" dition. The fifth column (Question Points) contains the val-

measure of performance, but this is misleading. In contrast ues for the dependent variable. These values represent the
sums of triples from the second. third and fourth columnsto externally posed questions, Chi (1995. Chi et al. 1989) (Posed Questions, Answered Questions and Correct

reports that improved learning is correlated with human sub-

jects who generate their own questions and explain the Answers, respectively).

answers themselves. Being able to recognize that a gap In this run, random drug busts occur II times (5 v\ ith the
exists in one's own knowledge, and thus to ask the question canine squad and 6 with a lone police officer). Alo. Dad is
"Why don't I understand this?" (Ram 1991), is the first step the most common protagoniste while Elvis. OfAicerl. and

to improving understanding. To pose self-generated ques- Lynn are tied for the least common. Furthermore. boredom
tions thus indexes understanding and simultaneously is the major problem encountered by the main characters.

reduces the probability of asking only easy questions. So, to althou consideng the nano dru sts.
evalatetheabilty f te Mea-AUA yste, cedi is although considering the number of random drug, busts. the

evaluate the ability of the Meta-AQUA system, credit is household can hardly be classified as sedate. The main char-
given for simply posing a question that deserves asking. acters solve (or attempted to solve) seven of these boredom

Moreover, humans who are asked questions on reading problems by playing with one of three balls and solve three
tests are sometimes given points for partial answers. Unlike by playing with balloons. The state of being concerned is the

test ar somtims gven oins fr patia anwers Unike least recurrent problem exhibited in the run.
questions that have provably correct answers, answers to

explanatory questions are difficult to judge in an absolute
sense. So to be more realistic, the evaluation criterion in
Meta-AQUA assigns credit for providing any answer to a 7The reason that each run varies in length is that. after
question. Therefore, the full evaluation metric is as follows, generating around 600,000 gensyms, Meta-AQUA kill
For each anomalous or interesting input in a story, a point is use all available swap space on the Symbolics and thus
given for posing a question, an additional point is given for inadvertently halt the underlying LISP system. We then
providing any answer whatsoever, and a third point is discard the story which is being processed at the time of
assigned for answering what the researcher judges correct. the crash. The data from thý remaining stories constitute
The sum represents the dependent variable, the results of the run.
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Table 1: Results from run number four

Story Questions Answered Correct Question Learning Protagonist and
Number Posed Questions Answers Points Episodes Problemb

(sentences)a (LG RL NL) (LG RL NL) (LG RL NL) (LG RL NL) (LG RL NL)

1 (26) 1 1 1 000 000 1 11 1 10 Mom bored (balloon)

2(19) 333 322 100 755 230 Mom bored (ball)

3(38B) t 11 1 000 000 11 1 110 Elvisjonesing

4(51b) I I 1 100 100 31 1 010 Dadjonesing

5(21) 1 11 100 100 31 1 010 Mom bored (ball)

6(13) ! 11 100 100 311 010 Officerl concerned

7(13) 1 l l 100 100 31 1 010 Dad bored (ball)

8(21) 000 000 000 000 000 Dad thirsty

9 (44B) 222 211 100 533 120 Dad thirsty

10 (51B) 333 21 1 210 754 010 Dad bored (balloon)

11 (11) 221 1 1 100 432 120 Lynn bored (ball)

12(3) 000 000 000 000 000 Officerl concerned

13 (47b) 221 11 0 1 10 441 000 Mom thirsty

14(15) 444 423 400 1267 040 Mom bored (ball)

15(28) 000 000 000 000 000 Lynn jonesing

16 (42B) 222 211 210 643 010 Dad jonesing

17 (45b) 2 2 1 1 10 1 10 44 1 000 Elvisjonesing

18(21) 222 2 1 1 2 1 0 643 010 Officerl concerned

19(20) 000 000 000 000 000 Dad jonesing

20 (52b) 22 1 100 100 42 1 010 Dad bored (balloon)

21 (39b) 221 1 1 1 1 443 1 10 Lynn jonesing

22(17) 222 21 1 200 633 020 Dad bored (ball)

23 (40B) 222 1 11 1 10 443 1 10 Elvis thirsty

24 (38b) 22 1 0 100 43 1 010 Mom bored (ball)

Total 715 383832 28 15 13 257 1 916046 8260

a. The letter "'B" means that the story contamn, an attempted drug bust by the police canine squad. whereas the letter "b"
means that the officer entered the house alone to attempt a bust.

b. Items in parentheses represent games pla,,ed to dispel boredom.

Table 2: Summary of results from run four

Learning Questions Ansered Correct Total Learning
Condition Posed Que,,ttions Answers Question Episodes

Points

LG 38 29 25 91 8

RL 38 15 7 60 26

NL 32 13 1 46 0
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Table 2 summarizes the totals from Table I .The depen- two. This striking result was facilitated by the random order
dent variable (column 5) shows that Meta-AQUA's perfor- of input (i.e., the second trial happened to be about the same
mance under the LG condition is significantly greater than problem as the first) as well as by computational introspec-
the performance under the RL condition. In turn, Meta- tion.
AQUA performance in the RL condition far exceeded the
performance under the NL condition. Overall Results. Table 3 summarizes the evaluation data

from the six program runs. As is evident across all runs, the
Alternatively, if only absolute performance (column 4) LG condition consistently outperforms the RL condition in

is considered, the differential is even greater. By this mea- the total cumulative question points. In turn, the RL condi-
sure, the LG condition is more than three times the value of tion outperforms the NL condition, despite the occasional
the RL condition, whereas, the performance of the NL con- poor performance due to negative interactions. As indicated
dition is insignificant. By looking at column three, however, by the standard deviations, the amount of differences
the numbers of questions answered in some way (right or between and within conditions exhibit high variability across
wrong). are roughly equivalent in the RL and NL conditions, runs.
whereas the ratio of the LG condition to either of the other
two is 2:1. Finally, the number of questions posed are virtu- Given these totals, the percent improvement for either
ally equal across all three conditions. learning condition over the NL base condition is simply the

ratio of the difference in the base performance score and
In contrast to these differences, Meta-AQUA attempts either score to the base score itself. Thus for run one. the

to learn from failure more than three times as often under the ratio of the difference between the LG and NL conditions
RL condition as under the LG condition. That is. learning is (35 points) to the NL condition (50 points) is .7. or 70 per-
more effective with learning goals than without. In the RL cent. Again, the improvement in performance for the LG
condition. learning does not increase performance as much condition is consistently higher than that of the RL condi-
as does the LG condition, while concurrently. it leads Meta- tion. This difference is calculated in the final column. The
AQUA to expend more resources by increasing the amount differential is the percent improvement of the LG condition
of learning episodes. Thus, the system works harder and over the RL condition and is computed by the same measure
gains less under RL than under LG. as was the improvements in the individual learning condi-

tions. That is, the differential is the ratio of the difference
Figure 5 graphs the accumulation of question points between the two improvements to the lower rate.4 Thus, the

across trials (i.e.. stories).8 The behavior of the system as differential between the LG rate of learning in run number
measured by the dependent variable is greatest under the LG one and that of the RL condition is the ratio of the difference
condition, next best under RL, and worst under the NL con- (8 percentage points) to the RL percentage (62). Hence. the
dition. But. the trend does not hold for each trial. Figure 6 ratio is .129, or an improvement of nearly 13 percent
shows raw scores indicating that the NL condition actually
outperforms the RL condition on trial number 14. The reason Although the average differential between the two
for this effect is that under worse-case conditions, if the learning conditions (i.e., between fully-introspecti\e and
interactions present between learning methods are negative, semi-introspective multistrategy learning) is more than 106
the performance may actually degrade. As a result. randomly percent with a large standard deviation, this figure still over-
ordered learning may be worse than no learning at all. states the difference. The expected gain in learning is more

conservative. The differential between the a'eraie LG
The differences as a function of the independent vari- improvement (102.70) and the average RL improvement

able are even more pronounced if only accuracy (the number (65.67) is a 56.38 percent difference. That is. across a num-
of correct answers) is examined and partial credit ignored. ber of input conditions, the use of learning goals to order and
Figure 7 shows that under the RL condition, Meta-AQUA combine learning choices should show about 1.5 times the
did not answer a question correctly until trial number 10, improvement in performance than will a straight mapping of
whereas under the NL condition, it did not perform correctly faults to repairs when interactions are present.
until trial 21. On the other hand, because under the LG con-
dition the system learned a new explanation early in trial
number 1, it was able to answer a question by trial number

9Note that this ratio can also be calculated as the
difference between the performance scores of' the
learning conditions to the difference between the

8Note that the final extent of all three curves reach the performance score of the RL and NL conditions. In other
value of the triple in the totals column for column five. words, the ratio (LG-RL) / (RL-NL).
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Table 3: Summary of cumulative results

Run Cumulative Question Points % LG % RL Improvement

Numbera LG RL NL Improved Improved Differential %

Run 1 (34) 85 81 50 70.00 62.00 12.90

Run 2 (30) 106 98 43 146.51 127.91 14.55

Run 3 (28) 120 102 60 100.00 70.00 42.86

Run 4 (24) 91 60 46 97.83 30.43 221.43

Run 5 (22) 57 49 27 111.11 81.48 36.36

Run 6 (28) 103 66 54 90.74 22.22 308.33

Averages 93.67 76.00 46.67 102.70 65.67 106.07
Std. Dev. 21.72 21-31 11.34 25.43 38.17 126.59

a. Amounts in parentheses indicate total number of stories in each run.
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Summary and Discussion established that predict when the utility of introspection

The experiments reported in this paper provide a number of exceeds its cost. The space of applicability conditions for

results that support the hypothesis that computational intro- introspection is expected to emerge from the taxonomy of

spection facilitates multistrategy learning. Meta-AQUA causal factors presented in Ram, Cox, and Narayanan

expended more learning resources and induced less perfor- (1995). It has already been shown through the existing

mance improvement without learning goals than it did under implementation that introspection in certain circumstances

a condition that included them. Moreover, we have shown is tractable. Thus, a lower bound is already available. It is

that because learning algorithms negatively interact, the clearly not possible to reason in any effective manner if all

arbitrary ordering of learning methods (i.e., as under the RL possible failures occur at once or given an overly-sparse BK.

condition) can actually lead to worse system performance So an analysis of the interaction of the taxonomized causal

than no learning at all. Therefore, an explicit phase to decide factors should result in a set of complex failures that can be

exactly what to learn (i.e., to spawn learning goals or an programmed into Tale-Spin in order to produce various dis-

equivalent mechanism) is necessary to avoid these interac- tributions of errors. Meta-AQUA is expected to have diffi-

tions and to maintain effective learning in multistrategy envi- culty learning from some of the failure combinations within

ronments. The paper also provided a novel quantitative these error distributions. As with the ablation study. mea-

measure with which to evaluate the comprehension process. sures with and without introspection provide the indepen-

As dependent variable, this partial credit metric provides dent variable for the evaluation of learning. The results
rewards for both posing questions autonomously and giving should itemize the conjunctions of failure from which it issome type of answer, as well as for getting answers correctg impossible to recover and those for which a reflexive or

tightly coupled approach is more suited.

Because of the considerable computational overheadinvoved in mnta g on ingerable computatrnac. perhormg In the interim, a potential heuristic for deciding when toinvolved in maintaining a reasoning trace, performing
use an introspective approach is to qualitatively ascertainblame-assignment. spawning learning goals, and construct-

ing a plan with which to pursue such goals, the benefits of whether or not interactions between learning mechanisms

using introspection must be substantial to justify the costs. 10  available to the learner exist. If they exist. then the approach

Furthermore. under extremely complex situations or in should be applied, otherwise a more reflexive approach is

informationally impoverished circumstances, deciding on an licensed. In speculation, another potential heuristic fordeter-

optimal learning goal is certainly intractable. In such situa- mining that introspection is a win is to use a threshold for the

tions, it may be more beneficial to proceed without further number of failure symptoms above which introspection will

reasoning, rather than to attempt to understand the exact not be attempted. Through experimentation, this threshold

causes of the failure. Knowing when a learning task is worth number should be obtained empirically given a distribution

pursuing is itself an important skill to master for an intelli- of known problem types and a random selection of problems

gent system. Identifying the most appropriate conditions for from the distribution. The identification of such heuristics
the use of an introspective approach is therefore a desirable will enable the practical use of introspective methods in sys-

research goal. To establish only that introspection facilitates tems that cannot afford to squander precious resources with

learning and that the model of introspection has some quality intractable computation.

of reasonableness is not satisfactory. Although further
inquiry into these conditions is left for future research, a
number of remarks can be made at this time.
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dismissing introspection due to computational overhead
costs alone. Doyle (1980) warns that to disregard the
introspective component and self-knowledge in order to
save the computational overhead in space, time, and
notation is discarding the very information necessary to
avoid combinatorial explosions in search (p. 30).
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Abstract a design and experiences with acquiring,
Solving problems in many real-world domains assembling and finishing individual

requires integrating knowledge from several past components.
experiences. What is needed is a method that allows
the merging of arbitrary numbers of plans at any point All of these problems have something in common:
during the adaptation process and the dynamic every piece of the solution can be constructed
extraction of relevant case subparts Our solution is entirely out of the agent's past experience (with
the Multi-Plan Adaptor (MPA). a method for merging suitable adaptation), but no single past experience
partial-order plans in the context of case-based least- suffices to solve the entire problem. For these types
commitment planning. MIPA provides this ability by of problems, unless a case-based reasoning system
extracting an intermediate goal statement from a has the ability to combine several past experiences, it
partial plan. clipping a stored plan to the intermediate will have to resort to expensive from-scratch
goal statement, and then splicing the clipping into the reasoning in order to solve the problem.
original partial plan. Because the cost of retrieval can Some CBR planning systems combine multiple
potentially outweigh the benefits of adaptation, cases during reasoning. However, they either gather
developing heuristics for deciding when to retrieve is a
challenging problem. Our current implementation of all partial plans at retrieval prior to adaptation (e.g.,

MPA in the multistrategy reasoning system Janus uses PRODIGY/ANALOGY, Veloso 1994), or break

an asynchronous. resource-bounded memor', module plans into snippets at storage time so they can be
called MOORE that initially retrieves its current "best retrieved individually (e.g., CELIA, Redmond 1990,
guess" but continues to monitor the adaptation s•stem. 1992). Neither of these approaches are entirely
spontaneously returning a better retrie,.ai as soon as it satisfactory, for various reasons.
is found. It is not entirely clear that all of the knowledge

needed to solve a problem can be assembled at the
1. Introduction beginning of problem solving. For example. in the

Taking advantage of past experiences is the furniture example, it is not entirely clear whether or

foundation of case-based reasoning. When not the agent needs to buy new sandpaper, and hence
unclear whether the agent should recall past

confronted with a problem, a case-based reasoner
recalls a past experience and adapts it to provide the experiences of buying sandpaper at a hardware store.

solution to the new problem. Unfortunately, in many This uncertainty arises out of several concerns: the

real-world domains we cannot count on a single past uncertainty of the world state (how much sandpaper

experience to provide the outline of a solution to our does the agent have?), uncertainty in the

problems. For example: effectiveness of agent actions (how much wood will a

" A graduate student asked to present his first piece of sandpaper sand?) and the potential of
p graduateanstvesenased conferenent h rst dexogenous events that can invalidate parts of the
paper at an overseas conference must draw plan (if a friend drops and scars a piece of the
on previous, separate experiences in furniture, will the agent have enough sandpaper to
countryandpreparing talks forpcof spind hremove the scar, or will he need to buy more?). But it
country arrangend s p ore car os p ortsade ocan also arise out of the plan itself.- until the agent
flight arrangements for vacations outside of has decided on a design for the piece and how much
his country. wood will be involved, it is unclear precisely how

"* A host planning his first large dinner party much sandpaper is needed, and hence unclear
must recall both the outline of a menu as whether or not a plan should be retrieved. If some
served at family gatherings and his separate amount of sandpaper is on hand, the goal of
experiences at preparing individual dishes acquiring sandpaper may not even arise until late in
for himself. the planning process, when it has become clear that

"* A home hobbyist attempting his first large the amount on hand is insufficient.
piece of furniture must recall both past Precomputing case snippets also has drawbacks.
examples of that type of furniture to provide While this allows us to extract subparts of a case to

This research was supported by the United States Air Force Laboratory Graduate Fellowship PropVun by the Air Foace Office of Sciennfic
Research uider Contract # F49620-94- 1-0092. and by the Georgia intitute of Technology.
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subcornponents need to be computed at storage time. ("gesso Mello ktf.t, 1,,,at rinse Ct,,.t
Unfortunately. it is not clear that every useful
breakdown of a can can be computed in advance.
For example, in the foreign conference example, the
two past experiences must be closely interleaved to
produce a new plan. If the agent has not stored the Figure 1. Refinement of Partial Plans
passport experience as a separate snippet, the agent
may not be able to extract that particular piece of a
case if it is retrieved - if the agent was able to 2. Least Commitment Planning and
retrieve the case at all. Systematic Plan Adaptation

What is needed is a method that allows the
merging of arbitrary numbers of plans at any point
during the adaptation process, and which allows the 2.1. Least Commitment Planning: SNLP
dynamic extraction of relevant case subparts. Our Least-commitment planning departs from traditional
solution is the Multi-Plan Adaptor (MPA). a novel planning systems by delaying decisions about step
method for merging partial-order plans in the orderings and bindings as much as possible to
context of case-based least-commitment planning. prevent backtracking (Weld 1994). Depending on
The MPA algorithm builds on the Systematic Plan the domain and search strategy, least-commitment
Adaptor (SPA: Hanks and Weld 1994). a case-based planning can lead to substantial improvements over
least-commitment planner that annotates partially traditional totally ordered plans (Barret & Weld
ordered plans with dependency structure, to allow 1994; but for an alternative view see Minton et al
later refitting and adaptation. SPA sho\ss ,ignificant 1994, Veloso & Blythe 1994).
improvements over generative planning. but can Least-commitment planners solve problems by
only adapt one plan at a time and hence for the types successive refinement of a partial plan derived from
of problems described above must resort to the initial and goal conditions of the problem (Figure
significant amounts of from-scratch planning. 1). Plans are represented as sets of steps, causal links

MPA overcomes this limitation of SPA by between steps, variable bindings and ordering
extracting an intermediate goal srarenmcnt from a constraints. Beginning with a skeletal partial plan
partial plan, clipping a stored plan to the based on the initial and goal conditions of the
intermediate goal statement. and then splicing the problem, a least-commitment planner attempts to
clipping into the original partial plan. Depending on refine the plan by adding steps, links and constraints
the size of the plans spliced and the retrieval that eliminate open conditions or resolve threats.
algorithms used, MPA can produce .ignificant An open condition in a partially ordered plan
speedups over SPA. occurs when a plan step has a precondition that has

Because the cost of retrieval can potentially no causal link to an effect in a prior step in the plan
outweigh the benefits of adaptation in an interleaved that establishes that condition. Open conditions can
system, developing heuristics for deciding when to be resolved by adding a new step that establishes the
retrieve is a challenging problem. Our current desired effect and linking the precondition to it, or
implementation of MPA in the multistrategy by linking the precondition directly to an effect
reasoning system Janus uses an as. nchronous, already in the plan if one exists.
resource-bounded memory module called MOORE A threat in a partially ordered plan occurs when
that initially retrieves its current "best guess" but the condition established by the producing step in a
continues to monitor the adaptation system, causal link may be clobbered by the effects of
spontaneously returning a better retrieval .as soon as another step before it is used by the consuming step
it is found. in the link. Threats may be resolved by adding

In this paper, we briefly review least-commitment ordering constraints that move the threatening step
planning and how it can be used for adaptation. We before or after the steps in the causal link, or by
then present the MPA algorithm, decribe its adding binding constraints that ensure that the
foundations in and extensions of the SPA algorithm. effects of the other step cannot unify with the step of
and then detail how MPA can be used to address the the causal link.
limitations of existing multi-plan system, We then Given an arbitrary sequence of decisions to add
discuss how MPA can be integrated into various steps and bindings, there is no guarantee that the
control regimes, including systematic, pure case- partial plan produced can be successfully refined into
based and interleaved systems, and decribe our a correct solution. An analytical failure occurs
implementation of interleaved MPA in the Janus when an incomplete partial plan cannot be further
system. We conclude the paper by reviewing other refined by adding new steps, links or constraints. In
case-based planning work and then outline our a purely generative planner, analytical failures can
contributions in the appendix. be resolved by backtracking to a point in the search
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spe where the inconsistent choices have not been I noel * 4We SKOM

rade and then selecting different choices. 9"8'OMM s t
SNLP (hicllster & Rosenblitt 1991) is a

complete, canis :&mnd systematic partial order
planner that uses S11positional STRIPS notation to 7.
represent steps in i partial plans. Problem solving
in SNLP begins with a list of initial conditions and
goal conditions, which SNLP transforms into a
skeletal plan with a dummy initial step whose
postconditions establish the initial conditions and a
dummy final step whose preconditions match the
goal conditions. As outlined above, SNLP operates N
by repeated refinement in which open conditions are
resolved and threats are eliminated. Z Savo Cam Lr

Figure 2. Fitting of Partial Plans
2.2. Systematic Plan Adaptation: SPA situation. Since SPA retrieves a plan and modifies it
The Systematic Plan Adaptor algorithm (Hanks & to fit the current situation, it does not have a past
Weld 1994) is an algorithm for case-based planning reasoning history to backtrack over to eliminate
that incorporates SNLP into its adaptation analytical failures. Instead, SPA considers not only
mechanism. SPA provides vast speedups over adding new refinements to the partial plans it is
SNLP's performance by retrieving single plans considering but also retracting those refinements.
which it fits and adapts, yet it maintains SNLP's The reason data structures are used to select a plan
properties of soundness, completeness, and decision upon which no other decisions depend. That
systematicity. decision is then removed and all of the alternative

SPA is based on three key ideas: decisions that could have been made are placed in
* annotate partial plans with reasons for the queue of partial plans the system is working on.

decisions

"* add a retraction mechanism to remove 2.3. Limits of SPA: Achieving
decisions Systematicity

"* add afitting mechanism to fit previous plans One limitation of SPA is that it can only adapt a
to current situations single plan at a time: even if a new problem could be

SPA extends the SNLP algorithm b, adding reason solved by retrieving and merging two plans, the
annotations to refinements added to the plan. Reason system is constrained to retrieve only a single plan
data structures take a middle ground between a and then adapt it to fit. This limitation arises from
derivational trace of a planner's activit (eg., Ram SPA's attempt to maintain systematicitr.
& Cox 1994, lhrig & Kambhampati 199-Ua. Veloso Systematicity ensures that the problem solver never

1994) and an unannotated plan. Like the partial- repeats work: if SPA considers a plan once, it never

order plan representation itself, which records considers it again.
necessary orderings and interactions betveen steps SPA ensures this by performing a breadth-first
without specifying a precise ordering. reasons record search in the space of partial plans, beginning with

the necessary dependencies between refinements the retrieved prior plan. Initially, the set of states on
without specifying the precise ordering in which the the system's search frontier consists of only this

planner made the choices. plan, which is considered for both refinement and

The reason data structures are first used to fit a retraction. As search progresses, successive

retrieved plan to the new situation (Figure 2). The refinements are guaranteed (because of the properties.ure 2. The of the underlying SNLP algorithm) never toinitial and goal conditions of a prior plan may not o h neligSL loih)nvrtmatchalthedcurrentonsituation, andriit Iplanntainnstep backtrack over previously visited states. The systemmatch the current situation, and it ma.N ,ontimn steps

and links that are not relevant to sol'.ing the new maintains systematicity in retraction by removing

problem. To remedy this situation, SPA a-diusts the only one decision at a time. The retracted plan is

initial and final conditions of the retrieved plan to added to the search frontier with an indication for

match the current problem, and then uses the reason further retraction, and all of the alternative decisions

data structures to recursively eliminate steps that that the system might have made are added to the

attempt to resolve deleted goal condition', and links frontier for further refinement. Hence, only one plan

that depend on deleted initial conditions. on the search frontier is considered for retraction at

The reason structures are also used to select any one time, and the result of a retraction produces

refinements for retraction. Once a plan has been a set of plans which are guaranteed to be new and

retrieved, it may contain steps and constraints that guaranteed to never generate plans that have been

would lead to analytical failures in the current previously considered.
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3. An Algorithm for Plan Adaptation and o .Mho. fo.,,faPp • I,-01 $up
Merging

SPA, while it does loovide substantial speedups over
SNLP, still is consmined to retrieving and applying
a single plan, an*, dterefore often must result to Lf
significant amounts of from-scratch planning even '.
when the knowledge needed to complete the plan is
present in the case library. To make the most
effective use of the planner's past experience, we I
need the ability to recognize when a partial plan
needs to be extended, select plans to that address the Go,,•-use L,,v, MaUW- 4 "M"

deficiency, and then extract and merge the relevant Figre 3. Multi-Plan Adaptation
parts of the retrieved plan into the original partial
plan. Just like the original goal statement, the

The Multi-Plan Adaptor algorithm (MPA) resolves intermediate goal statement can be used to retrieve
this problem in SPA by allowing the retrieval and and fit a partial plan. However, the result of this
merging of arbitrary numbers of cases at any point process is not a complete fitted plan suitable for
during the adaptation process. MPA further allows adaptation; it is a plan clipping that satisfies some or
the dynamic extraction of relevant parts of past all of the open conditions of the partial plan from
cases. To achieve this, the MPA algorithm extends which the intermediate goal statement was derived.
the SPA framework in three crucial ways: To take advantage of the plan clipping for

* extract intermediate goal statements from adaptation, it must be spliced into the original
partial plans partial plan (Figure 3). Our splicing mechanism uses

"* use the fitting mechanism to clip plans for the intermediate goal statement to produce a
merging mapping between the partial plan and the plan"mgid ang sclipping, pairing open conditions from the partial

* build a plan splicer to merge two plans plan with satisfied goal conditions from the plan
Intermediate goal statements provide MPA with clipping. The plan splicer uses this mapping to

the ability to merge partial plans at any point of the perform a guided refinement of the original partial
adaptation process and contributes to its ability to plan, selecting goal conditions from the clipping and
dynamically extract the relevant subparts of retrieved using the links and steps that satisfied them as
cases. MPA translates the incomplete state of a templates to instantiate similar steps and links in the
partial plan into a goal statement, allowing the original plan. As these steps are added, new
system to use the same retrieval mechanisms that it mappings are established between open conditions in
used to retrieve the initial plan. Once a plan has been the new steps and satisfied preconditions in the
retrieved that matches the intermediate goal clipping and are added to the queue of mappings that
statement, the relevant subparts must be extracted. the splicer is processing. Hence, the plan splicer
The plan fitting mechanism performs this extraction performs a backwards breadth-first search through
dynamically, removing portions of the plan that are the causal structure of the plan clipping, using links
not causally relevant to the intermediate goal and steps in the clipping to guide the instantiation of
statement. links and steps in the original plan.

Intermediate goal statements are extracted by the
inverse of the representational trick with which 3.1. The Efficiency of Plan Splicing
SNLP constructs its initial skeletal plans. Recall that Both adapting a single partial plan and adapting
SNLP builds the initial plan it considers by adding merged partial plans can produce significant benefits
dummy initial and final steps whose post- and pre-
conditions match the initial and goal conditions of over generative problem solving. The cost of
the problem. As planning proceeds, open conditions generative planning is exponential in the size of the
inthe proale Astplatem nt aeresoledsbutnew open cofinal plan produced, whereas fitting a plan is a linearin the goal statement are resolved, but new open

conditions are posted as new steps are added. These operation in the size of the plan. Hence, the potential

open conditions themselves can be extracted from exists for substantial improvement through retrieval

the plan to form a new goal statement. Similarly, the and adaptation if an appropriate past plan exists,

initial conditions of the partial plan can be extracted especially for large plans. In certain domains, SPA

and used as a new set of initial conditions.t has demonstrated significant improvements over
generative planning. However, if large gaps exist in
the retrieved partial plan, SPA must resort to

i Unforztnately, since ordering constraints and binding constraints

nmy be ported to the plan at any time. only the initial conditions can However, it might be posible to develop heuistics that select
be guaranteed to be valid conditions for the intermediate goal additional initial conditions that wte likely to hold, perhaps in
statement. Conditions established by other steps of the plan may be conjunction with mome complex remeval, fitting and splicing
clobbered by the addition of new steps and new ordering constraints algonithms.
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adaptation, which, like generative problem solving, plan splicing at any point during adaptation. In the
has an exponential cost in the number of steps that middle stands Interactive MPA (MPA-i), a system
need to be added. that can potentially attempt a retrieval at any time,

While this amow#W adaptation may be significant either with the initial skeletal plan or with partial
improvement over nomplete from-scratch problem plans produced as a result of adaptation. Since the
solving, the potenoW exists to reduce that even results of splicing cause large jumps in the search
further by using MPA to clip and splice more partial space, the system deliberately departs from the
plans. Fitting a clipping and splicing a clipping are systematicity of SNLP and SPA in an attempt to
linear operations in the size of the plan being solve the problem with less search.
spliced. Hence, the potential exists for substantial However, allowing arbitrary plan retrieval and plan
improvement through plan merging if an appropriate splicing is not without cost. Performing a full search
past plan exists, especially if the gaps in the existing of the system's case library at every step of the
plan are large. An initial implementation of MPA for problem space could be computationally prohibitive.
a test domain indicated significant speedups The costs of searching the case library at every step
(beginning at 30%) over SPA for even the smallest of the problem space could outweigh the benefits of
examples (solution size of the final plan = 5 steps). reduced search, especially if the system enters a

However, both plan adaptation and plan merging .slump" - an adaptation episode which begins and
require the retrieval of a past plan. and that retrieval ends with the application of relevant clippings, but
cost may offset the benefits of adaptation or merging. which goes through a series of intermediate plans for
For SPA, retrieval costs are incurred once. before which the system cannot match any existing plans in
adaptation begins, and hence it is simple to its case library. Clearly, it is worthwhile to retrieve
determine whether the cost of retrieval will be offset and apply clippings at the beginning and end of a
by the benefits of adaptation. For MPA. the picture is slump. but a full search of the case library at each
not so simple. MPA allows plan merging at any intermediate step could cost more than the benefits
point during adaptation. and hence it is not clear that the initial and final retrievals provide. This is
from the MPA algorithm itself when retriexal will be the swamping utility problem - the benefits of case
performed, how many retrievals will be performed, retrieval can be outweighed by the costs of that
and hence whether those costs will be offset b\ the retrieval, leading to an overall degradation in
improvements in problem solving. In order to performance as a result of case learning (Francis &
determine this, we must embed MPA within a Ram 1995).
control regime that determines when and how often Developing heuristics for deciding when and when
retrieval will be performed before we can precisely not to retrieve is a challenging open problem. To
specify the benefits of multi-plan adaptation. solve this problem, we have implemented a

multistrategy reasoning system called Janus which

4. Controlling Plan Splicing pairs MPA with an asynchronous, resource-bounded
memory module called MOORE. In Janus, MPA and

Merely having the ability to splice plans together MOORE share a central blackboard. When MPA

does not allow us to 'take advantage of past MOEsaeacnrlbakor.We P
d frequests a partial plan, MOORE returns its current

experience. We need to decide what experiences to best guess. However, the retrieval request remains
combine and when to combine them. Because the active, and as the MPA adapts the plan the new
MPA algorithm can potentially be performed at any partial plans it constructs provide additional cues for
point during the adaptation process - using an MOORE to attempt further retrievals. When MOORE
initial skeletal plan derived from the initial and goal finds a new past case whose degree of match exceeds
statement, using a fitted plan derived from retrieval, a certain threshold, it signals MPA, which splices it
or using an adapted plan after some arbitrar. amount into the appropriate partial plan.
of retraction and refinement - we have coniderable
flexibility in deciding what to retrieve. %hen to S. Related Work
retrieve it and when to merge it.

We have considered three alternative control There are wide bodies of work on both least-
regimes, each of which makes different commitment planning and case-based reasoning.
commitments about when to retrieve and \hen to The most relevant example of that work to this
adapt. On one end of the spectrum. Svstemit', %IPA research is of course SPA, upon which MPA builds.
preserves SPA's property of systematicity b splicing MPA's plan splicing mechanism is in many ways
all retrieved cases before adaptation begins On the similar to DERSNLP (Ihrig & Kambhampati 1994)
other, Extreme MPA never performs (generative) derivational analogy system built on top of SNLP
adaptation and instead uses set of pivotal cases that uses eager replay to guide a partial order
(Smyth & Keane 1995) to guarantee completeness. planner. While DERSNLP's eager replay mechanism

Both Systematic and Extreme MPA make extreme is in some ways similar to a limiting case of MPA-s
commitments: either integrate all knowledge before in which a single plan is retrieved and spliced into a
adaptation begins, or never adapt and rely solely on skeletal plan derived from an initial problem
past experience. An alternative approach is to allow statement, DERSNLP goes beyond SPA's reason
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mechanism and includes a full derivational trace of intermediate goal statement to retrieve and clip a
problem solving in its cases. While DERSNLP and past plan to the partial plan, and then splicing the
its extension DERSNLP-EBL focus on when it is clipping into the original partial plan.
profitable to er a partial plan, unlike MPA-i Multi-plan adaptation has the potential for
they do not prfoviWhe capability of interrupting substantial speedup over single-plan adaptation, but
adaptation as a ru* of an asynchronous memory in order for those benefits to be realized MPA must
retrieval, nor do they provide the ability to integrate be embedded within a control regime that decides
the results of multiple plans. when the system attempts a retrieval, when the

Combining multiple plans in case-based reasoning system merges, and when the system resorts to
is not a new idea. The PRODIGY/ANALOGY adaptation. We have implemented an interactive
system (Veloso 1994) can retrieve and merge the algorithm called MPA-i which allows the retrieval of
results of an arbitrary number of totally ordered past cases at any point during adaptation.
plans during the derivational analogy process. Because an interleaved system can potentially
However, because PRODIGY/ANALOGY attempt a retrieval at every adaptation step and
manipulates and stores totally ordered plans, it runs hence has the potential to swamp the benefits of
into significant issues on deciding how to interleave adaptation under a sea of retrieval costs, developing
steps (Veloso 1994, p124-127), an issue MPA avoids heuristics for deciding when to retrieve is a difficult
because of its least-commitment heritage, problem. Our current implementation of MPA-i as a
Furthermore, all of the plans that the system merges part of the Janus multistrategy reasoning system uses
must be retrieved prior to the beginning of an asynchronous, resource-bounded memory module
adaptation; PRODIGY/ANALOGY does not have called MOORE that retrieves a "'best guess" and then
the ability to retrieve and combine cases on the fly. continues to monitor the progress of adaptation,

The JULIA system (Hinrichs 1992) also has the returning a new or better retrieval as soon as it is
ability to combine pieces of several past cases, but found.
this is largely a domain-dependent algorithm for
merging declarative structures, rather than a domain Appendix: Describing the Contributions
independent planning system. The CELIA system
(Redmond 1990. 1992) stores cases as separate A. Reasoning Framework:
snippets, case subcomponents organized around a 1. What is the reasoning framework?
single goal or set of conjunctive goals. Snippets The reasoning framework is a case-based reasoning
provide CELIA with the ability to retrieve and system layered on top of a least-commitment planner.
identify relevant subparts of a past case based on the This framework can be embedded in several control
system's current goals. Note that while snippets are regimes; an interleaved regime based on an
superficially similar to plan clippings, plan clippings asynchronous memory module is implemented.
are constructed dynamically during problem solving, 2. What benefits can be gained that motivated usingwhereas snippets need to be computed and stored in adaptation? reuse?advance. Adaptation/reuse of past problem solving cases caneliminate vast amounts of search and cause

Clippings are similar to macro operators (Fikes et significant speedups in problem solving.
al. 1972) in that they use past experience to combine 3. What are the specific benefits and limitations of
several problem solving steps into a single structure your approach?
that can be applied as a unit, allowing the system to Our approach can provide improvement over from-
make large jumps in the problem space and avoid scratch problem solving and single-case adaptation.
unnecessary search. However, macro operators differ However, it is currently limited to merging problem-
from clippings in two important ways. First, macro solving cases or other cases with a causal structure.
operators are precomputed at storage time, whereas and like all planning and learning algorithms it is
clippings are computed dynamically; second. macro sensitive to domain characteristics.
operators are fixed sequences of operators. whereas 4. What invariants does it guarantee?
clippings are partially ordered sets of operators that When the domain affords the use of past problem
may be resolved in a wide variety of ways in the final solving experiences and relevant experiences are
plan. available, this method can reduce the number of

states visited in the search space.
5. What are the roles of adaptation, knowledge and

6. Conclusion reuse in your approach?

We have presented the Multi-Plan Adaptor. an A. Knowledge:
algorithm that allows a case-based least-commitment I. What does it encode? Plans
planner to take advantage of the benefits of several 2. How is it represented? Partial-order plans with a
past experiences. MPA provides the ability to propositional STRIPS notation.
retrieve and merge dynamically selected case 3. How is it used? To provide the framework for
components at any point during the adaptation new plans.

procss b exractng n inermeiat goa 4.How is it acquired? Thirough generative or case-process by extracting an intermediate goal based problem solving.

statements from a partial plan. using the
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. 4. How does the evaluation validate or illuminate
1. What is adapted? Plans (past problem solving your theory of adaptation of knowledge for reuse?

.). Our research provides an initial indication that multi-
2. Why is it a4b[ ? To avoid generative search. plan adaptation can be more effective than planning
3. What po of the knowledge representation from scratch.

does adapipý, require or exploit? Plans must 5. What are the primary contributions of your
be annotate with reason data structures that research?
allow retraction of decisions (for adaptation) and Our research contributes an algorithm for multi-plan
plan fitting (for adaptation and merging). adaptation for case-based least-commitment planning

4. How are the benefits measured? In the number and offers initial indications that multi-plan
of states in the search space avoided and/or adaptation may be an efficient adaptation technique
problems solving time.

5. What is gained' Past plans provide an outline of References
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Abstract

This article presents a computational model of the learning of diagnostic knowledge, based

on observations of human operators engaged in a real-world troubleshooting task. We present

a model of problem solving and learning in which the reasoner introspects about its own perfor-

mance on the problem-solving task, identifies what it needs to learn to improve its performance,

formulates learning goals to acquire the required knowledge, and pursues its learning goals

using multiple learning strategies. The model is implemented in a computer system which

provides a case study based on observations of troubleshooting operators and protocol analysis

of the data gathered in the test area of an operational electronics manufacturing plant. The

model not only addresses issues in human learning, but, in addition, is computationally justified

as a uniform, extensible framework for multistrategy learning.



1 Introduction

The focus of our research is on the integration of different kinds of knowledge and reasoning

processes into real-world systems that can learn through experience. In particular, we are interested

in modeling active, goal-driven learning processes that underlie deliberative learning during the

performance of complex reasoning tasks. This article presents a case study of multistrategy learning

for the problem of learning diagnostic knowledge during a troubleshooting task. The case study

is based upon observations of human operators engaged in this task. We present a computational

model of problem solving and learning in which the reasoning system performs a diagnostic

problem-solving task, and then introspects about its own performance on the task, identifies what

it needs to learn to improve its performance, formulates learning goals to acquire the required

knowledge, and pursues its learning goals using multiple learning strategies.

This research was motivated by two considerations. First, although there has been a significant

growth of research on machine learning, much of this research has not been performed in the

context of complex real-world problem-solving tasks (cf. Riddle, 1992). As a result, the issues of

scalability and robustness of these methods, as they are applied to real-world problems, are still

unresolved in many cases. To promote the applicability and usability of research methods, it is

important to ground theories of reasoning, knowledge representation, and learning in the context

of real-world tasks and domains.

Our second motivation was to provide a computational account of human learning in the

context of a real-world problem. The model presented in this article is based on observations of

troubleshooting operators and protocol analysis of the data gathered in the test area of an operational

electronics manufacturing plant. The model is implemented in a computer system, Meta-TS,I which

uses multiple types of knowledge to troubleshoot printed-circuit boards that fail in the test area

of the manufacturing plant. Meta-TS has been evaluated on a series of troubleshooting problems,

including actual problems encountered by the human operators in the manufacturing plant. The

underlying model is intended as a computational model of human learning; in addition, it is

computationally justified as a uniform, extensible framework for multistrategy learning in machine

learning systems.



1.1 The problem

One of the critical areas in electronics assembly manufacturing is the test and repair area (Douglas,

1988; Kakani, 1987). It is estimated that about 20% of manufactured printed-circuit boards

(PCBs) fail in the test area in an initial electronics assembly line, particularly in a medium-to-high

variety product line when it takes time to achieve desired levels of process control. When PCBs

spend a considerable amount of time in the test and repair area, it increases the work-in-process

inventory and slows down the feedback to the manufacturing line necessary for achieving better

process control. This results in significant deterioration of system performance. Computerized

decision aids can potentially alleviate some of the major problems in the test and repair area and

facilitate enhanced system performance. A key to developing computer-based aids is understanding

the human problem-solving processes that carry out the complex task of troubleshooting in an

assembly line situation. While there has been much interest in developing artificial intelligence

(AI) applications in various areas of electronics manufacturing (e.g., Miller & Walker. 1988). most

of this research has not dealt with the issues of learning or cognitive modeling.

It is generally accepted that learning is central to intelligent reasoning systems that perform re-

alistic reasoning tasks, such as understanding natural language stories or solving complex problems

(e.g., Anderson, 1987; Feigenbaum, 1963; Schank, 1983). It is impossible to anticipate all possible

situations in advance and to hand-program a machine with exactly the right knowledge to deal with

all the situations that it might be faced with. Rather, during the performance of any non-trivial

reasoning task, whether by human or by machine, there will always be failures. An important

aspect of intelligence lies in the ability to recover from such failures and, more importantly, to learn

from them so as not to make the same mistake in future situations.

In the Meta-TS system, reasoning failures consist of incorrect troubleshooting diagnoses, no

diagnosis (impasses), and successful diagnoses from inefficient problem-solving. 2 When such

failures occur, the system must be able to select and apply an appropriate learning strategy in order

to improve the chances of making a correct diagnosis in similar future situations. Thus, one approach

a reasoning system might take is to reflect over the reasoning that went into making the original

diagnosis and then use this introspective analysis to form a basis for selecting a learning strategy.

To model this process theoretically, we have developed a computational model of introspective
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reasoning for decision-making about learning needs and associated learning strategies. This model

is instantiated in the context of the diagnostic problem-solving task in the domain of electronics

assembly manufacturing.

1.2 Multistrategy learning

Learning manifests itself in humans with multiple strategies over a multitude of learning problems.

Over the past few years, research in machine learning and cognitive science has focused on the

development of independent learning algorithms for many classes of these problems. Some of

the algorithms that are tailored to particular learning problems include inductive learning (e.g.,

induction of decision trees (Quinlan, 1986), conceptual clustering (Fisher, 1987; Michalski &

Stepp, 1983)), analytical learning (e.g., explanation-based learning (DeJong & Mooney, 1986,

Mitchell, Keller, & Kedar-Cabelli, 1986), learning from explanation failures (Hall, 1988, VanLehn.

Jones, & Chi, 1992)), and analogical learning (e.g., analogy (Falkenhainer, 1989; Gentner, 1989),

case-based learning (e.g., Carbonell, 1986; Hammond, 1989)). Recently, under the banner of

"multistrategy learning," there has been much interest in combining or otherwise integrating these

and other learning methods in order to address more complex situations than does independent

"monostrategy learning" (see, e.g., Michalski & Tecuci, 1994). Multistrategy learning systems

use a variety of control methods to integrate and combine several learning strategies into a single

computer model, providing power and flexibility over a wide range of problems.

An alternative approach to flexible learning is exemplified by cognitive architectures such as

Soar (Laird, Rosenbloom, & Newell, 1986). Soar takes a broad approach to learning, using a single

learning mechanism (chunking), rather than multiple learning strategies to account for learning on

different classes of problems. Instead of explicit representations of different problem solving and

learning methods and explicit selection between them, Soar is based on "weak methods" (universal

subgoaling and chunking) from which higher-level strategies emerge. The system has been shown

to model explanation-based generalization, strategy learning, macro-operator learning, learning

from advice, and other kinds of learning (Steier et al., 1987).

Regardless of whether it is possible that a single underlying mechanism might be able to account

for all these methods, however, it is still important to identify and study the methods themselves (and
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the conditions under which they are useful), particularly when developing computational models

of human learning in which behaviors corresponding to these learning methods are exhibited.

Rather than assume a uniform mechanism from which the strategies emerge, the multistrategy

approach integrates separate learning strategies into a unified whole by providing a system with

some mechanism for combining the strategies (or for choosing from among them). The desired

learning behavior(s) can then be modeled by manipulating the suite of strategies available to the

learner, by adjusting the manner of combination or the decision mechanism that chooses between

strategies, or by changing the kinds of learning goals available for pursuit. One advantage of this

approach is that different learning behaviors can be modeled directly and explicitly.

Our methodological stance is to develop an explicit theory of the different types of reasoning and

learning that the system is to perform. We wish to understand the nature of various learning methods,

the kinds of situations to which the methods apply, the kinds of knowledge that can be learned

with them, and the limitations each method implies. Our approach uses a set of available learning

strategies that are selected through an introspective analysis of the system's reasoning processes.

Our method, called introspective multistrategy learning, combines metacognitive reasoning with

multistrategy learning to allow the system to determine what it needs to learn and how that learning

should be performed.

1.3 Introspective multistrategy learning

In order to fully integrate multiple learning algorithms into a single multistrategy system, it is

beneficial to develop methods by which the system can make its own decisions concerning which

learning strategies to use in a given circumstance. Often, knowledge about applicability conditions

and utility of learning strategies is implicit in the procedures that implement the strategy; this further

complicates the problem the system faces when automatically choosing a learning algorithm. Our

solution to this problem is to represent knowledge of learning strategies and applicability conditions

for these strategies explicitly in the system itself. An additional methodological benefit of this

approach is that it requires the researcher to formulate such information as.an explicit part of the

proposed theory of learning, thus improving the specification of the theory.

In addition to the world model that describes its domain, an introspective multistrategy learning
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system has access to meta-models describing its reasoning and learning processes, the knowledge

that this reasoning is based on, the indices used to organize and retrieve this knowledge, and the

conditions under which different reasoning and learning strategies are useful. A meta-model is

also used to represent the system's reasoning during a performance task, the decisions it took while

performing the reasoning, and the results of the reasoning. All of this knowledge can then be

used to guide multistrategy learning using introspective analysis to support the strategy selection

process.

The introspective process in our model relies on meta-explanations about reasoning. These

are similar to self-explanations (Chi & VanLehn, 1991; Pirolli & Bielaczyc, 1989; Pirolli &

Recker, in press; VanLehn, Jones, & Chi, 1992), with the difference that self-explanations are

explanations about events and objects in the external world, whereas our meta-explanations are

explanations about events and objects in the reasoning system's train of thoughts-the mental world.

While experimental results in the metacognition literature suggest that introspective reasoning can

facilitate reasoning and learning (see, e.g., Schneider, 1985; Weinert, 1987; and the further review

of the metacognition literature in section 5. 1), it is important to develop computational models that

specify the mechanisms by which this facilitation occurs and the kinds of knowledge that these

mechanisms rely on.

Our approach is motivated by computational and system design considerations as well. The

approach relies on a declarative representation of meta-models for reasoning and learning. There

are several advantages of maintaining such structures in memory. Because these structures repre-

sent reasoning processes explicitly, the system can directly inspect the reasons underlying a given

processing decision it has taken and evaluate the progress towards a goal. Thus, these representa-

tions can also be, used to assign blame, to analyze why reasoning errors occurred, and to facilitate

learning from these errors. Furthermore, these knowledge structures provide a principled basis for

integrating multiple reasoning and learning strategies, and the unified framework makes it possible

to incorporate additional types of learning situations and additional learning strategies for these

situations.

The key representational entity in our learning theory is a meta-explanation pattern (Meta-XP),

which is a causal, introspective explanation structure that explains how and why an agent reasons.

and which helps the system in the learning task (Cox & Ram, 1992; Ram & Cox, 1994). There
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are two broad classes of Meta-XPs. Trace Meta-XPs record a declarative trace of the reasoning

performed by a system, along with causal links that explain the decisions taken. The trace holds

explicit information concerning the manner in which knowledge gaps are identified, the reasons why

particular hypotheses are generated, the strategies chosen for verifying candidate hypotheses, and

the basis for choosing particular reasoning methods for each of these. Trace Meta-XPs are similar

to "reasoning traces" (Carbonell, 1986; Minton, 1988; Veloso & Carbonell, 1994) or "justification

structures" (Birnbaum et al., 1990; deKleer et al., 1977; Doyle, 1979), with the difference that

Trace Meta-XPs represent, in addition to the subgoal structure of the problem and justifications

for operator selection decisions, information about the structure of the (possibly multistrategy)

reasoning process that generated a solution. For example, at the highest level of granularity, a node

in a Trace Meta-XP might represent the choice of a reasoning method such as association-based

search or heuristic reasoning, and at a more detailed level a node might represent the process

of selecting and using a particular association or heuristic. These structures could, therefore, be

viewed as representing the -mental operators" underlying the reasoning process.

The major contribution of our approach, however, is the use of a new kind of meta-explanation

structure to represent classes of learning situations along with the types of learning needed in those

situations. This structure, called an Introspective Meta-XP, aids in the analysis of the reasoning

trace to analyze the system's reasoning process, and is an essential component of a multistrategy

learning system that can automatically identify and correct its own shortcomings. Thus, instead of

simply representing a trace of the reasoning process, we also represent the knowledge required to

analyze these traces in order to determine what to learn and how to learn it. As outlined in table 1,

the system uses Introspective Meta-XPs to examine the declarative reasoning chain (recorded in

step 0) in order to both explain the reasoning process and to learn from it after a problem-solving

episode. These structures associate a failure type3 (detected in step 1) with learning goals and

the appropriate set of learning strategies for pursuing those goals. Thus, given a specific learning

goal, as opposed to the failure itself, the system can explicitly plan for achieving that goal in it

background knowledge (or even defer the goal pursuit until a later learning opportunity arises),

much like traditional planners pursue goals in the world.'

Table I should be placed near here.
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Therefore, an Introspective Meta-XP performs three functions: in step 2B it aids in blame

assignment (determining which knowledge structures are missing, incorrect or inappropriately

.applied); in step 2C it aids in the formulation of appropriate learning goals to pursue; and in

step 2D it aids in the selection of appropriate learning algorithms to recover and learn from the

reasoning error. Such meta-explanations augment a system's ability to introspectively reason

about its own knowledge, about gaps within this knowledge, and about the reasoning processes

which attempt to fill these gaps. In Meta-TS, the use of explicit Meta-XP structures allows direct

inspection of the need to learn that arises from a problem-solving failure, and of the bases for the

selection of an appropriate learning strategy to address that need.

The remainder of this article is organized as follows, The next two sections present the

technical details of the computational model, including the problem-solving system (section 2) and

the introspective multistrategy learning system (section 3) that constitute the major components

of the model. The article then discusses both a quantitative and a qualitative evaluation of the

model (section 4) and relates the model to research in both artificial intelligence and psychology

(section 5). The article concludes with pragmatic implications of the model in education (section 6)

and a summary (section 7).

2 Diagnostic problem-solving

Before presenting the problem-solving component of the Meta-TS system, this section will describe

the diagnostic problem-solving task addressed by Meta-TS, and the environment from which the

human data was collected that constituted Meta-TS's problem set.

2.1 A real-world problem-solving task

NCR's manufacturing plant located near Atlanta has state-of-the-art facilities in electronics assem-

bly manufacturing with a newly installed surface mount technology (SMT) line. Our project began

when the plant became operational in January 1990 (Cohen, 1990). At that time, the plant was

facing typical start-up problems experienced by most new facilities. There were a high number

of printed-circuit boards (PCBs) in the test and repair region waiting to undergo troubleshooting.
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resulting in high work-in-process inventories. Our analysis of the system revealed that developing

a model of the troubleshooting operator would provide a structure for designing and implementing

computer-based tools for this task. The effort would also facilitate formalization of the task, which

could then be used in the design of instructional systems (Clancey, 1986), thereby facilitating the

development of a flexible work force that is complementary to the policy of the company.

A schematic of the manufacturing plant is shown in figure 1. An unpopulated board enters the

SMT line where it is populated with components, soldered, cleaned, and sheared. The populated

board then enters the test and repair area. A typical PCB manufacturing line has two major test and

repair areas, the "in-circuit test" area and the "functional test" area. PCBs are shipped only after

they pass both the in-circuit test (ICT) area and the functional test area. Our research focuses on

the troubleshooting process when a PCB fails in the ICT area.

Figure 1 should be placed near here.

In the ICT area, the populated printed-circuit board is mounted on an automated ICT machine.

The ICT machine checks individual components as well as connections between components for

proper functioning through several test procedures. If the PCB passes the tests, an appropriate

message appears on the console of the ICT machine. If the PCB fails any of the tests, the ICT

machine produces a ticket listing the detected failure(s). For example, a component on the PCB

could fail to meet the desired specifications, known as the "nominal" values of the component's

parameters. The ICT machine may also provide additional symptomatic information which can be

used by the human operator in the troubleshooting process. The operator then uses the information

in the ticket to troubleshoot the PCB. Troubleshooting is a complex task which can be broken into

two components: diagnosis and repair. Diagnosis is a problem-solving task in which the operator

arrives at a description of cause of the failure and identifies an appropriate set of repair actions to

fix the faulty PCB. Repair involves carrying out the repair actions (in this case, usually a set of

manual actions performed by the operator on the board).

We developed a computational model of an operator involved in the task of troubleshooting

a faulty PCB. The model was based on protocol analysis of over 300 problem-solving episodes

gathered in the ICT area of the NCR plant (Cohen, Mitchell, & Govindaraj, 1992), and implemented
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in a computer system that performed the troubleshooting task. Figure 2 shows part of an example

troubleshooting protocol from Cohen (1990, p. 206). Of the data collected, one set (30%) was

used in the development of the model and the remaining set (70%) was used to perform both

behavioral validation and process validation of the computational model. We found that although

the problem-solving model was a fair representation of a skilled troubleshooting operator, it had

some limitations. First, the system assumed that its knowledge was correct and complete during the

reasoning process. It is difficult to hand-code all the knowledge required for this task. Furthermore,

even if this could be done, the system would still be faced with the "brittleness" problem. Due to the

dynamics of the system state changes in the electronics manufacturing domain, the computational

model must be flexible and robust. For example, one of the pieces of knowledge in the system was

"Resistor r254 is often damaged." This occured due to a process problem in the manufacturing

plant. If the process problem were fixed, the association would no longer be valid. The system

must have the capability of altering its world model to reflect changes in the real world. In

addition, the problem-solving model did not capture improvement in the problem-solving skills

of the troubleshooting operator. Thus, the model was incomplete as a cognitive model of human

troubleshooting.

Figure 2 should be placed near here.

These considerations motivated our research towards incorporation of a learning model in the

system. The complete problem-solving and learning system is fully implemented in the Meta-TS

program, which has been evaluated using the data gathered at the NCR plant. In this article, we

will focus primarily on the learning aspects of the system; however, to provide context, we first

describe the problem-solving module of Meta-TS.

2.2 The diagnostic problem-solving module

A schematic of the problem-solving system, the troubleshooting module of Meta-TS, is shown

in figure 3 (Narayanan et al., 1992). The module takes as input the ICT ticket information and

the PCB information. The output of the module is a diagnosis and a set of recommended repair
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actions. The problem-solving process uses various types of knowledge, troubleshooting actions,

and control methods, briefly discussed below.

Figure 3 should be placed near here.

The problem-solving module uses various types of knowledge as well as available real-world

troubleshooting actions to hypothesize the cause of a failure and to suggest repair actions for

that failure. Based on the data from the human operators in the NCR plant, we categorized

diagnostic knowledge into two broad types, associations and heuristics. Associations are simple

rules which directly map a particular symptom to a specific diagnosis. The operator may perform

an intermediate action to confirm the hypothesis, but usually does not perform a series of search

sequences. This type of knowledge is context-sensitive and is indexed by board type. Heuristics are

standard rules of thumb. These rules are not context-sensitive and are applicable across board types.

Heuristics are used by the operator for troubleshooting when there is no known association for a

given problem situation. This knowledge determines the series of standard operating procedures

performed in troubleshooting a faulty PCB. Some examples of associative and heuristic knowledge

in the system are shown in table 2.

Table 2 should be placed near here.

In addition to associative and heuristic knowledge, the problem-solving module can also use

troubleshooting actions, which are intermediate subtasks performed by the system to gather the

board information. These correspond to explicit operator actions used in gathering information and

confirming intermediate hypotheses. Finally, the control methods in the problem-solving module

are procedures that enable the system to look at the symptoms, utilize the appropriate type of

knowledge, invoke proper intermediate actions, and finally arrive at the diagnosis result. This

result, also called a "diagnostic," is a description of the failure along with the repair action(s)

necessary to fix the faulty PCB. It is also possible that the ICT reading is incorrect (known in the

industry as a "bogus" reading), in which case the PCB is rerun through the ICT machine. Some

examples of troubleshooting actions, control methods, and repair actions are shown in table 3.
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Table 3 should be placed near here.

The problem-solving module was initially implemented as a separate system, and then later

incorporated into Meta-TS along with the introspective multistrategy learning module. The imple-

mentation used AT&T 2.1 C++ on a SUN workstation under the UNIX operating system. The ICT

ticket information and the PCB information were represented as C++ classes. Class representations

were also used for associative and heuristic knowledge, control methods, troubleshooting actions,

and repair actions in the system. An example of a problem-solving episode is shown in figure 4.

Figure 4 should be placed near here.

In order to validate the troubleshooting process of the problem-solving module, we added an

explanation facility to keep track of the system's problem-solving process and produce a trace

of the problem solving at the end of each problem-solving episode. The problem-solving traces

were compared with the verbal protocol data gathered from the human operators at the assembly

plant. (These problem-solving traces also played a central role in the learning module: this will

be discussed in more detail in section 3.) Using the problem-solving traces, the problem-solving

module was validated on 75% of the problem-solving episodes in our data for a major category of

board failures. On 84% of these episodes, the model arrived at the same diagnostic result as an

operator did in the real world for the same input information; and on 68% of the episodes. similar

actions were performed in the solution process (Narayanan et al., 1992). This remainder of this

article focuses on the learning module- further details of the problem-solving module can be found

in Cohen (1990) and Narayanan et al. (1992).

3 Learning diagnostic knowledge

Although the results from the stand-alone model of troubleshooting showed that the problem-

solving module constituted a reasonably good model of a skilled troubleshooting operator, the

model also contained obvious shortcomings. Electronics manufacturing, like most other real-
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world domains, is a complex and highly dynamic process. A complete model of troubleshooting

in such a domain requires a large amount of knowledge; in addition, the operator's knowledge

-will be inherently incomplete and subject to change as the process being modeled changes. The

problem-solving module, in contrast, was based on the assumption that the available knowledge

was complete and correct; it did not have the flexibility necessary to deal with this task domain

over an extended period of time. Furthermore, the model failed to capture the improvement of

problem-solving skills through experience, an important aspect of human performance in any task

domain.

For these reasons, we developed a learning module that allowed the system to learn incrementally

from each problem-solving episode. This module was based on observations of troubleshooting

operators in the plant, protocol analysis of the problem-solving process, and critical examination

of the computational model of the troubleshooting operator as implemented in the problem-solving

module. The overall system, called Meta-TS, uses multiple learning strategies, both supervised and

unsupervised, and a strategy selection mechanism to invoke appropriate strategies in different situ-

ations. Supervised learning occurs in situations in which a novice troubleshooter receives explicit

input from a skilled troubleshooter (the supervisor). In unsupervised learning, a troubleshooter

adapts his or her domain knowledge based on problem-solving experience without expert input.

Since a particular problem-solving episode may involve several pieces of knowledge (potentially

of different types), the troubleshooter, whether human or machine, must be able to examine the

reasons for successes and failures during problem solving in order to determine what needs to be

learned. For example, if the system fails to arrive at an correct diagnosis, it needs to determine

which piece of knowledge was missing or incorrect. To effectively accomplish this, the system

must be able to examine its own problem-solving processes. Thus, the problem-solving traces

produced by the explanation facility discussed earlier are a crucial component of the computational

model of learning.

Meta-TS uses declarative representations of the knowledge and methods used for problem-

solving in order to facilitate critical self-examination. A trace of the problem-solving process is

constructed during the troubleshooting episode, and introspectively analyzed during the learning

phase to determine what the system might learn from that episode. The analysis also helps the

system select the learning strategy appropriate for that type of learning.
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3.1 What is to be learned?

Since the problem-solving module relies on associative and heuristic knowledge, the learning

module must, in general, be able to acquire, modify, or delete such associations and heuristics

through experience. In order to be more specific about the constraints on and output of the

learning task, it is necessary to examine the troubleshooting model in more detail. Recent research

in diagnostic problem solving has proposed the use of "deep" reasoning methods (Davis, 1985)

or integration of "deep" and "shallow" reasoning methods in knowledge-based systems (Fink

& Lusth, 1987) and in tutoring systems (Lesgold et al., 1988). Our observations revealed that

operators rely predominantly on "shallow" reasoning methods using heuristic and context-sensitive

associative knowledge during problem solving (Cohen, 1990; Cohen, Mitchell, & Govindaraj,

1992; Narayanan et al., 1992). This may be due to the fact that the ICT machine filters out most

of the topographic knowledge of the PCB and causal knowledge of the components in the board

through a series of tests. Maxion (1985) makes a similar observation about human problem-solving

in the domain of hardware systems diagnosis, noting that "diagnostic judgement is based on gross

chunks of conceptual knowledge as opposed to detailed knowledge of the domain architecture"

[pp. 268-269]. The observation by Barr and Feigenbaum (1981), that humans often solve a problem

by finding a way to think about the problem that facilitates the search for a solution, was clearly

evident in our study. In this task domain, the search is carried out through "shallow- reasoning

using associations and heuristics; furthermore, the search is sensitive to process changes and can

sometimes make use of a human expert. Thus, the learning strategies implemented in Meta-TS

focus on the supervised and unsupervised acquisition, modification, and deletion of associative

knowledge through the analysis of reasoning traces that, however, do not contain detailed domain

knowledge.

Associative knowledge improves the system performance in two ways. First, it improves

the speed of the problem-solving proess. Using associative knowledge typically results in the

reduction of some intermediate steps in the reasoning process, thus resulting in some savings in the

time required to troubleshoot; this is particularly significant if the problem-solving steps involve

real-world actions (such as the lifted leg procedure) which take time to execute. This reduction is

important for assembly line tasks which are typically highly time-constrained. Second, associative

knowledge can provide solutions in cases where heuristic knowledge requires information about
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the board that is not easy to obtain. In general, associative knowledge contributes to the quality and

correctness of the solution for a large number of the problem-solving situations. This was evident

in our data from the electronics assembly plant, and has also been observed by other researchers

(e.g., Arabian, 1989). Thus, an important type of learning is one in which the operator learns

associations through experience.

Human operators involved in troubleshooting also appear to learn some heuristic knowledge.

We noticed that the training program for novice human operators primarily focuses on manual

skills such as soldering and performing actions such as "ohming out." However, the problem-

solving process of skilled human operators in the plant revealed that they often use certain standard

operating procedures or heuristics. The source of this heuristic knowledge appears to be the result

of generalization of associations learned over time while troubleshooting. In addition. as is the

case for associations, heuristics can be learned through both supervised and unsupervised learning

methods. The current implementation of Meta-TS focuses on the learning of associative knowledge

through experience and does not include strategies for learning heuristics. More research is needed

to develop such strategies.

3.2 The introspective multistrategy-learning module

Our approach to multistrategy learning is based on the analysis of declarative traces of reasoning

processes to determine what and how to learn (Ram & Cox, 1994). A particular troubleshooting

episode may involve many different associations, heuristics, and troubleshooting actions. If the

final diagnosis is incorrect, the system analyzes its reasoning process, assigns blame for its failure.

and determines what it needs to learn in order to avoid repeating a similar mistake in the future.

If the diagnosis is correct, the system can determine what it might learn in order to improve the

process that led up to this diagnosis. Finally, depending on the type of learning that is necessary.

the system must invoke an appropriate learning strategy. Thus, learning is viewed as a deliberative.

planful process in which the system makes explicit decisions about what to learn and how to learn

it (Hunter, 1990b; Quilici, in press; Ram, 1991; Ram & Hunter, 1992; Ram & Leake, in press:

Redmond, 1992). In our introspective multistrategy learning framework, these decisions are based

through introspective analysis of the system's performance, which relies on metaknowledge about
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the reasoning performed by the system during the performance task, about the system's knowledge,

and about the organization of this knowledge (Ram & Cox, 1994; Ram, Cox, & Narayanan, in

press).

The submodules and the control flow in the introspective multistrategy learning module are

shown in figure 5 along with the sources of information used by the submodules. The problem-

solving module has a declarative representation of the associative knowledge used in troubleshoot-

ing. The learning module can add, delete, or modify associative knowledge in the problem-solving

module. It also has a set of verification actions and a set of declaratively represented learning

strategies.

During a troubleshooting episode, a trace of the reasoning performed by the system along with

causal links that explain the intermediate decisions taken is recorded in an instance of a Trace

Meta-XP by the system's explanation facility. The explainer uses input from the problem-solving

module in the form of actions taken, knowledge used to make decisions, and the diagnosis outcome.

It also uses the ICT ticket reading and its representation of the PCB from the world model. From

this input it reconstructs the reasoning trace and passes it to the introspector.

Figure 5 should be placed near here.

After every problem-solving episode, the introspector examines the reasoning trace and uses

information gathered from tests on the world to determine if the system can learn something from

this experience. Learning occurs when the system fails to make the correct diagnosis (due to

missing or incorrect knowledge) or when the system ascertains that the problem-solving process

can be made more efficient. The tests also help to generate and verify hypotheses that explain

why the reasoning which produced the diagnosis failed, and play a role similar to the real-world

actions performed by experimentation systems (e.g., Carbonell & Gil, 1990; Rajamoney. 1989).

Specifically, in addition to accessing ICT information and PCB information which is provided as

input to the system, the system uses troubleshooting actions to gather additional information about

the PCB and verification actions to obtain statistical information and to gather information from an

expert troubleshooter.
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Finally, based on what needs to be learned, an appropriate learning strategy is triggered, which

results in the modification of existing knowledge in the problem-solving system. The learning mod-

ule contains a set of learning strategies represented along with information for strategy selection.

In Meta-TS, the introspector is implemented as a C++ class with methods for each learning strategy

(see figure 6); this class encodes the knowledge that corresponds to the Introspective Meta-XPs

discussed earlier. The learning strategies currently implemented in Meta-TS are discussed in the

next section.

Figure 6 should be placed near here.

3.3 Learning strategies

Meta-TS has several strategies for learning associative knowledge for the troubleshooting task, in-

cluding unsupervised knowledge compilation, supervised learning from an expert, postponement of

learning goals, and forgetting invalid associations. Each strategy requires us to make several design

decisions; these are discussed below. All the strategies discussed below are fully implemented.

3.3.1 Unsupervised learning

The first strategy is that of unsupervised, incremental inductive learning, which creates an associa-

tion when the problem-solving module arrives at a correct diagnosis using heuristic knowledge. The

introspector compiles the heuristic knowledge into an association using a learning method similar

to knowledge compilation (Anderson. 1989). The motivation for this type of learning is perfor-

mance gain through reduction of the number of intermediate steps when the system encounters a

similar problem in the future, although use of this strategy also reinforces correct problem-solving

sequences.

An example of the unsupervised learning of associations through experience is shown in figure 7.

In this example, the ICT ticket reading indicated that the resistor component r22 had failed with a

measured reading of 16 ohms. The nominal reading of this component, from the PCB specification,
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is 20 ohms. The problem-solving module reads the symptom (step 1 in the figure). It first tries

to find an association that directly maps the observed symptoms into a diagnosis, but fails to find

one (step 2). It then finds (step 3) and invokes (step 4) a heuristic that recommends performing the

troubleshooting action "ohming out" on r22. The action is performed in step 5, but it finds that r22

is not faulty. Finally, the system outputs the diagnosis that the ICT ticket reading was "bogus."

These steps are stored in a Trace Meta-XP, which is analyzed after the troubleshooting is

complete. In this example, the introspector performs additional tests on the PCB to determine that

the diagnosis is correct. Since this is an experience in which a correct diagnosis was reached through

the use of heuristic knowledge in a situation for which no association existed, an Introspective Meta-

XP recommends that a new association be learned: "If the ICT ticket indicates that r22 has failed,

and the measured reading is slightly lower than the nominal value, then output the diagnosis that

the ICT ticket is "bogus." This association is installed in the system and is used for future problem

solving: it may also be deleted later if it is incorrect or becomes obsolete (e.g., if the problem is

fixed).

Figure 7 should be placed near here.

Several design decisions were made in our implementation of this learning strategy:

" What is the right time to activate the strategy? Unsupervised learning takes place at the end

of a troubleshooting episode. This strategy is activated when Meta-TS arrives at the right

solution using heuristic knowledge alone.

"* When is it useful to form an association? Meta-TS uses statistical information about the

episode (e.g., the number of steps involved in problem solving) and determines if there

will be performance gain through the reduction in the number of intermediate steps w, hile

troubleshooting a similar board. This information is only used to determine whether learning

a new association would speed up the troubleshooting process, and does not ensure that the

learned association is "correct."

"* What is the right association to learn? Consider the situation when the ICT input is 1. the

intermediate steps are 1, 2, 3, 4, and 5, and the diagnostic result is 0. Meta-TS would form
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an association either between I and 0, or between I, the final step (step 5 in this example),

and 0. Domain knowledge is used to decide between the two alternatives. Our data shows

that human operators typically form an association between the input and output without any

intermediate steps when the diagnostic result is "Bogus ICT ticket reading." In contrast, when

the operator decides to replace a defective part, he or she is conservative and performs either

a visual inspection or some other intermediate action to confirm the hypothesis. Meta-TS

behaves in a similar manner.

Discussion: We observed that human operators used yellow tags ("Postlt notes") to note down

a recurring problem, especially when they believe that this information will be useful in the

future. This happened when they performed several intermediate steps during troubleshooting, and

typically after they had arrived at the diagnostic result. This was the motivation for including this

learning strategy, and also the basis for the first two design decisions.

3.3.2 Supervised learning

The second learning strategy creates a new association through supervisory input. This strategy is

triggered when the system arrives at an incorrect solution using heuristic and/or associative knowl-

edge. The system attempts to acquire a correct associative knowledge from a skilled troubleshooter

(the "supervisor"). This mechanism is similar to the interactive transfer of expertise in TEIRESIAS

(Davis, 1979). However, the knowledge learned in our system is not in the form of production

rules, but in the form of frames and slots for association records.

An example of the supervised learning of associations through experience is shown in figure 8.

In this example, the ICT ticket reading indicates that the resistor component r24 has failed, the

measured reading of 21.2 ohms being much higher than the nominal value of 10 ohms. There are

no known associations for this problem. .o the system applies a heuristic that recommends "ohming

out" on r24. In this example, "ohming out" confirms that the ticket reading was correct. Another

heuristic recommends a simple visual inspection of the PCB, which shows that r24 is missing from

this PCB. This is output as the diagnosis from the problem-solving module. The introspector in the

learning module finds that the diagnosis is not correct; in this case, there is a missing IC component,

u37, that is responsible for the problematic ICT ticket reading. The expert supervisor suggests that
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a new association be formed that, for this input, recommends performing a visual inspection on

u37. This association is learned and installed for future use.

Figure 8 should be placed near here.

Several design decisions were made in our implementation of this learning strategy:

"* What is the right time to activate the learning strategy? This strategy is activated at the end

of the troubleshooting episode when the system arrives at an incorrect solution or is unable

to make any inference based on the information available to it.

"* What is the structure of the supenrisorv input? The structure of the desired supervisory

input is determined by the manner in which the associative knowledge is stored in the

system. In contrast, the conversation between an expert and novice troubleshooter is not

so structured. Since the relevant information transmitted between them is domain- and

task-oriented, however, that structure is exploited in the dialogs used by Meta-TS. While

the current implementation of this learning strategy does not model the full richness of

a troubleshooter's interactions with an expert, the more structured interaction allows an

objective evaluation of the model. The user interaction in the current implementation of the

system is very simple since that was not the focus of our research; however, it would be

relatively easy to include a more sophisticated dialog system if desired.

"* How can the system reason about the validity of the expert input? This is an open question

for learning systems in general. However, for our purposes, the input from the expert

troubleshooter can be assumed to be correct. Meta-TS does not critically examine whether

the input given by the expert is correct; it directly takes the associative knowledge input by

the expert and adds it to its knowledge base.

Discussion: Novice operators ask expert troubleshooters such as engineers or highly trained

technicians when they have problems in their task. We use the expert-novice metaphor for the

supervisor-system interaction. The system learns the knowledge input by the supervisor (as do

novice troubleshooters). The interaction between Meta-TS and the expert is capable of gathering
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the relevant associative knowledge. However, the actual mode of communication does not reflect

expert-novice interaction in the real world. For example, Meta-TS currently does not model

apprenticeship relationships in troubleshooting (e.g., Redmond, 1992).

The improvement in system performance from this learning strategy depends on the quality

and validity of the expert input. The new knowledge is subject to change, depending on the future

episodes encountered by the system. If the new knowledge obtained from supervisory input is

found to be reliable in a number of future instances, the confidence in the gained knowledge is

increased. However, if the new knowledge is incorrect, it is deleted over time (see section 3.3.4).

Thus, the transfer of knowledge is immediate but the "sustainability" of the knowledge depends on

the use of the gained knowledge.

3.3.3 Postponement

A third learning strategy is that of postponement (Hammond et al., 1993; Ram, 1991). This strategy

is triggered when the system is unable to get immediate input from a skilled troubleshooter. The

system posts a learning goal (Ram, 1991; Ram & Hunter, 1992; Ram & Leake, in press). keeps

track of the reasoning trace for the particular problem-solving episode, and asks questions at a

later time to gather appropriate associative knowledge. Postponement takes place when there is no

supervisory input at the end of a troubleshooting episode. The learning goal and the trace of the

troubleshooting episode are stored in the introspector. Suspended learning goals can be satisfied

both through supervised or unsupervised methods at a later time.

At the beginning of a new troubleshooting episode, the introspector checks whether the reason-

ing trace associated with any suspended learning goal is based on an input problem that is similar

to the current problem. Similarity is determined based on the fault type indicated on the ICT ticket

and the difference between the nominal and measured readings. If one or more matching learning

goals are found and an expert is available, the introspector triggers a question-and-answer session

by presenting the information it has on the past episodes. Details of the episodes are presented only

if the supervisor desires to look at it. If expert input is obtained, new associative knowledge is added

to the system and the resolved learning goals are deleted along with the associated reasoning traces.

The system then continues to solve the current problem using the new associative knowledge.
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If no expert input is available, the introspector tries to solve the current problem. If it succeeds,

the learning goals that matched this problem are automatically satisfied without supervisory input.

As before, these goals and associated reasoning traces are deleted since the system is now capable

of solving those problems. The system is also capable of solving similar problems in the future

with the newly formed associative knowledge.

Again, several design decisions were made in our implementation of this learning strategy:

" What is the appropriate time for question-answer sessions? A question-answer session takes

place either at the end of a troubleshooting episode or at the beginning of a new episode.

Question-answer sessions are not needed for learning goals that become redundant when

new associative knowledge is learned without user input. There are, of course, several other

factors involved in deciding when to ask a question, including sociological factors such as

the personalities of and interpersonal interactions between the troubleshooter and the expert

technician; these are outside the focus of our model.

"* How should the suspended question be presented? Meta-TS uses context-sensitive presenta-

tion of information. When the user is asked for input in a situation which matches a similar

situation that is associated with a learning goal suspended from a prior episode, the informa-

tion in the reasoning traces leading to that learning goal is presented to provide a context for

the dialog. Using the principle of progressive disclosure, the user can ask to examine more

details.

"* When are learning goals active? Learning goals are always "active" in the sense that any

problem-solving episode or question-answer session could contain the information sought

by a prior learning goal; however, learning goals are not actively pursued by the system until

the desired information is available in the available input, at which time the algorithm that

carries out the learning is executed.

Discussion: Novice operators seek input from the expert supervisor when they are unable to find

the solution to a problem. Operators may ask for input when a similar new problem is encountered.

Undiagnosed PCBs may also be stored and retrieved later for re-analysis, which corresponds to

the deferment of a learning goal until a later opportunity to get the appropriate information is
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encountered. The design decision to present prior reasoning traces to the expert is intended to

facilitate user interaction; although operators can often recall what they did in earlier situations,

-it is arguable whether they remember all the details of the entire troubleshooting process for the

earlier situations.

3.3.4 Forgetting

Two additional learning strategies delete associative knowledge when it is no longer valid. These

strategies are primarily targeted at the brittleness problem that is encountered when the manufac-

turing process is changed and existing associations are rendered obsolete. The first strategy uses

expert input to delete associations, and is invoked at the end of every problem-solving episode.

The system queries the supervisor to determine whether any associations used in the reasoning

trace of that episode should be deleted. If the supervisor has knowledge about, for example, a

process change and the system dynamics has resulted in an association becoming obsolete, that

information can be input to Meta-TS. This strategy works quite well in general, although it is. of

course, dependent on the availability and quality of user input.

The second deletion strategy is unsupervised and does not require user input. This strategy

is selected when Meta-TS arrives at an incorrect solution (as determined through additional tests

on the PCB or through expert input) and the reasoning trace shows that a single association

was used in arriving at the solution. Since heuristic knowledge in this task domain tends to

be relatively stable, an incorrect diagnosis involving several heuristics and a single association is

blamed on the association. The introspector tracks down this association and deletes it. The current

implementation of this strategy cannot deal with situations in which more than one association is

used; such situations require assigning blame to the particular association that was at fault.

Several design decisions were made in our implementation of this learning strategy:

e Under what conditions should an association be deleted? When the expert troubleshooter

indicates that an association needs to be deleted, Meta-TS follows the supervisory input. In

the unsupervised mechanism, the system behaves conservatively in the sense that a piece

of associative knowledge is deleted only if the diagnostic result is incorrect and only one

association was involved in the problem-solving process. In the current implementation. a



user-definable parameter determines how many times an association needs to be responsible

for an incorrect diagnosis before it is deleted; while not a general solution to the problem of

determining when a piece of knowledge is no longer valid, this method is reasonable in our

task domain given the highly dynamic nature of the manufacturing process. Empirical studies

showed good performance with this parameter set to 1; hence, in the evaluations presented

in section 4, the system was configured to delete an association if it led to a single incorrect

diagnosis, but a different setting could be chosen if desired. Another learning strategy (not

currently implemented) would be to make the association more specific so as to exclude the

current situation.

* What is the right time to activate the strategies? Deletion of existing associative knowledge

in Meta-TS takes place at the end of a troubleshooting episode. At this point, the system has

available to it the trace of its reasoning process and also information about the correctness of

its diagnostic result. Both are required in order to identify and delete incorrect knowledge.

Discussion: When the manufacturing process changes, it impacts the quality of the boards produced.

the types of malfunctions that can occur, and consequently the operator troubleshooting. For

example, let us assume that r243 is a known defective part, say, due to a poor quality vendor. When

the vendor is changed, the part r243 may no longer be defective. Typically, this information is

communicated from the manufacturing process line or when the operator recognizes the change

in the situation due to a failure of the troubleshooting process. The first situation corresponds

to the supervisory input case, and the second to the unsupervised case. It is arguable whether

human operators can "forget" an association instantaneously; however, trained operators often stop

using an obsolete association even if they do not actually "forget" it. The cognitive plausibility of

various forgetting mechanisms is still an open research issue, although the methods implemented

in Meta-TS are effective in dealing with the particular task at hand.

4 Evaluation

Meta-TS has been evaluated both qualitatively and quantitatively. We were interested both in

comparing the results to the human data, as well as evaluating it as a machine learning system.
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We evaluated the system using 42 actual problem-solving episodes gathered at the plant over a

2-month period (Cohen, 1990). The problems dealt with various types of resistor failures and

are representative of the types of problems encountered over the 2-month period. To evaluate the

learning methods, we tested the following five conditions on the 42 test problems.

* H (hand-coded): The original non-learning system with hand-coded associations. This

condition represents a troubleshooting system that has been hand-designed by an expert

researcher, and is useful as a benchmark in determining the strengths and limitations of the

learning strategies.

* NL (no learning): The system with all associations removed and learning turned off. This

condition represents a base case against which to evaluate the efficacy of the learning strate-

gies; it uses only heuristic knowledge.

e L (learning): The system with all associations removed and learning turned on. This is the

basic Meta-TS system with no prior experience.

* L42: The system with all associations removed, then trained it on the 42 test problems with

learning turned on. The system was then evaluated by re-running it on the same 42 problems.

This condition was intended to validate the learning strategies in Meta-TS by ensuring that

they learned the knowledge required to solve the problems.

* L20: The system with all associations removed, then trained on 20 randomly generated

training problems with learning turned on. The problems can be classified as easy. medium.

and hard, based on degree of difficulty as measured using the number of intermediate steps

in the troubleshooting process. We generated 20 random problems with the probabilities

that the problem generated was easy, medium or hard set to 0.6, 0.2 and 0.2, respectively.

The randomly generated training set is representative of the problems a human operator

encounters over about a month at the job, both in terms of number and degree of difficulty.

The problems varied from 42 test problems in various ways. In order to test the statistical

significance of the results, several independent random training problems were generated.

"L20" in the following discussion and in figures 8 through 12 indicates the mean L20 value

at various data points.
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Each of these conditions were evaluated quantitatively for speed and accuracy on the 42 test

problems, and also qualitatively by examining the content of the learned knowledge and details of

the solution process. For supervised learning strategies, we provided "expert" input to the system

based on what was appropriate to the input problem and domain experience.

4.1 Quantitative evaluation

Two quantitative performance measures were used: the accuracy of the diagnostic result, and the

speed (measured by the number of intermediate problem-solving steps) of arriving at the diagnosis.

Figures 9 through 13 illustrate the system performance over the 42 problems for the H, NL, L, L42

and L20 conditions.

Diagnostic accuracy: Figure 9 shows the cumulative accuracy of the system for the various

conditions. The H condition arrived at the correct diagnosis in 86% of the 42 problems. The

L42 condition arrived at the correct diagnosis in 81% of the problems. The values for the L20. L.

and NL conditions were 76.8%, 76%, and 71% respectively. The graphs illustrate both these final

accuracy figures, as well as the improvement of the system with experience.

Figure 9 should be placed near here.

Figures 10 and 11 compare the accuracy of the learning conditions relative to that of the hand-

coded condition and non-learning conditions, relatively. By measuring the ratio, we compensate

for differences in the intrinsic difficulty of the individual problems. Again, the graphs illustrate

both the final result as well as improvement with experience. The ratio of the L42 condition to that

of the H condition is about 0.94; for L20 and L conditions, the ratios are 0.9 and 0.89, respectively.

As compared with the NL condition, the LA2 condition is about 1.14 times more accurate; for L20

and L, the ratios are 1.08 and 1.07, respectively.

A t-test was performed to test the null hypothesis that the NL performance was equal to the

mean L20 performance. During this analysis, 5 independent random L20 sets were used: their

mean was tested against a constant, which is the value of NL. Using the operating characteristics
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curve, we determined that for the variance observed in the data, the sample size of 5 was sufficient

to keep the type II error (3) within 0.10. The t-test showed that the difference between NL and

L20 is statistically significant. At the end of 42 episodes, t(4) = 3.04, p < 0.05 for the null

hypothesis L20 = NL. With only 35 episodes, the statistical advantage of L20 over NL was only

marginally significant after sequential Bonferoni adjustment (t(4) = 3.33, p = 0.03). Thus, the

learning system showed improvement in performance as compared to the non-learning system, and

this improvement was statistically significant after 42 training episodes.

An independent t-test was performed to compare the mean L20 performance to the performance

in the H condition. The test showed that the performance of the learning system was poorer than

the performance of the system using hand-coded associations after 15 episodes at a type I error (W)

value of 0.05. Thus, the learning in Meta-TS was better than the NL condition, but poorer than the

H condition.

Figure 10 should be placed near here.

Figure 11 should be placed near here.

Speed of problem solving: Figures 12 and 13 compare the speed of the solution process (mea-

sured by the number of intermediate steps) with the various learning conditions relative to the

hand-coded and non-learning condition, respectively. The L20 and LA2 conditions consistently

arrive at the diagnostic result faster than the H condition. The L condition takes about 20 problem

episodes to reach the same speed as that of the H condition and then consistently arrives at the

diagnostic result faster than the H condition. At the end of the 42 problem episodes, the ratios of the

learning conditions to the hand-coded conditions are: 1.52 (L42 to H), 1.24 (L20 to H), and 1.06 (L

to H). In comparison to the non-learning version of the program, all the three learning conditions,

L42, L20, and L, consistently arrived at the diagnostic result faster than the NL condition. At the

end of the 42 problem episodes, the ratios of the learning conditions to the hand-coded conditions

are: 1.75 (L42 to H), 1.41 (L20 to H), and 1.20 (L to H).
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Figure 12 should be placed near here.

Figure 13 should be placed near here.

Discussion: The results of the quantitative evaluation can be summarized as follows. The

multistrategy learning module in Meta-TS clearly contributes to enhanced system performance in

the troubleshooting task; this improvement is statistically significant. In comparison with the non-

learning system with no hand-coded associations, the associative knowledge learned by Meta-TS

increases the accuracy of the diagnostic result and speeds up the problem-solving process. The

performance of Meta-TS further increases when it is trained on similar problems before it is applied

to novel problems. The associative knowledge learned by Meta-TS enables it to arrive at the same

solution as that of the system with the hand-coded associative knowledge between 89% and 94c7c

of the time.

Although Meta-TS is faster than the hand-coded version, it was also seen that Meta-TS with the

various learning strategies did not outperform the system with the hand-coded associations in terms

of the accuracy of diagnostic result. We hypothesize that it may be due to two reasons. First. in

order not to spoon-feed the system and possibly invalidate the results, the supervisory input given

to the system throughout the evaluation process was kept very minimal. Thus, the expert input

to the system for either the 20 or 42 problem-solving episodes may not have enabled Meta-TS to

obtain all the associations that an operator in the plant obtains over a period of several months of

task performance.' Second, the currently implemented system does not contain all the learning

strategies that a human operator uses. However, given the learning architecture used in Meta-TS.

it is possible to incorporate additional learning strategies, once identified, in the system.

4.2 Qualitative evaluation

We also evaluated Meta-TS using various qualitative metrics. We compared the learned associations

with the hand-coded associations, the solution process of a human operator to that of Meta-TS on
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the same problems, and the methods and knowledge used by Meta-TS to troubleshoot and learn to

those used by human operators. The results are as follows.

Quality of the learned associative knowledge: We compared the associative knowledge learned

by Meta-TS while troubleshooting the 42 test boards to the hand-coded associations in the original

problem-solving system. Meta-TS learned 33% of the hand-coded associations. It was unable

to learn some of the hand-coded associations as it did not encounter them in the training or test

problem set. (Recall that the hand-coded associations were based on over 300 problem-solving

episodes.) Meta-TS also learned other associations that did not correspond to the hand-coded ones

which enabled it to perform better in terms of the speed of the solution process.

Comparison of the solution process: We compared the process of arriving at a solution in

Meta-TS and operator troubleshooting processes from the verbal protocols. The L20 condition

was used in this comparison as it best represents a fairly trained operator because of the training

input discussed earlier. We divided the problems into two sets. Difficult problems included those

in which Meta-TS was unable to arrive at the correct solution or those which required several

intermediate problem-solving steps: in about 50% of these problems, human operators also spent a

considerable time in troubleshooting. The remaining problems were considered easy for Meta-TS:

in about 80% of these, human operators also arrived at the correct solution fairly quickly.

Comparison of troubleshooting knowledge and learning processes: As discussed earlier, hu-

man operators rely predominantly on shallow reasoning methods using heuristic and context-

sensitive associative knowledge in this task domain. This is modeled through the use of heuristic

and associative knowledge in the troubleshooting model. Furthermore, humans operators learn as-

sociative knowledge through experience in the task by several means. They may obtain input from

expert troubleshooters. They may also notice recurring instances of a problem and may then form

an association between the input and the diagnostic result. In some situations, when immediate

input from an expert is not available, they may place the PCB with the ICT reading aside and then

attempt to obtain supervisory input at a later time when they encounter a similar problem. All these

means of learning associative knowledge by human operators are reflected by the various learning
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strategies in Meta-TS, as discussed earlier. The strategies are integrated through the introspective

learning architecture of the system.

4.3 Generality of the model

In addition to evaluating Meta-TS itself, we also need to evaluate the generality and flexibility of the

underlying model of introspective multistrategy learning. We are performing another case study in

a task domain that is very different from the one discussed in this article. The Meta-AQUA system,

presented in Ram and Cox (1994), uses "deep" causal knowledge to understand natural language

stories. The performance task in this system that of causal and motivational analysis of conceptual

input in order to infer coherence-creating structures that tie the input together. Meta-AQUA is an

introspective multistrategy learning system that improves its ability to understand stories consisting

of sequences of descriptions of states and actions performed by characters in the real world. The

system is based on the AQUA system (Ram, 1991, 1993), which is a computational model of an

active reader. Meta-AQUA uses the same theory of introspective multistrategy learning to allow the

system to recover from, and learn from, several types of reasoning failures through an introspective

analysis of its performance on the story understanding task.

In both AQUA and Meta-AQUA, reading is viewed as an active, goal-driven process in which

the reasoning system focuses attention on what it needs to know and attempts to learn by pursuing its

goals to acquire information (Ram, 1991). Such a system models the hypothetical metacognitive

reader discussed by Weinert (1987), who "perceives a gap in his knowledge, ... attempt[s] to

take notes on the relevant information, to understand it," undertakes "learning activities from

a written text,' examines "how his assessment of his own knowledge structures compares with

his expectations about the demands" of an uncoming performance task, and can tell us about his

"preferred learning strategies, and his evaluation of his own situation and the possible consequences�

[p. 7]. While reasoning in this task domain is very different from the often shallow diagnostic

processes used in assembly line manufacturing, and the two use very different kinds of knowledge.

it is possible to use the same model of introspective multistrategy learning in both task domains

(Ram, Cox, & Narayanan, in press). Although further details of Meta-AQUA are outside the scope

of this article, we introduce the system here as further computational evidence of the generality of
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our approach.

4.4 Limitations of the model

While we have achieved a reasonable degree of success in modeling human troubleshooters as

they learn and gain experience on an assembly line, our model also has several limitations. Some

of these limitations are due to the level of granularity of the introspective multistrategy learning

theory; this issue is discussed further towards the end of this section and in section 5.2. Here, we

discuss limitations in our use of the theory as a computational model of human troubleshooting,

including limitations arising from the computational framework used to develop Meta-TS, and

limitations due to the current implementation of the Meta-TS program.

Implementational limitations are, perhaps, the least important. For example. our current

implementation of the method for interactive transfer of expertise during supervised learning is

very simple. We were interested in the integration of multiple learning methods into a single

system and not so much in developing new learning algorithms; if better learning algorithms

were developed, they could be incorporated into Meta-TS with relative ease. Similarly. the

implementation of forgetting simply involves deletion of an association; clearly, human forgetting

is a much more complex process (e.g., Cox, 1994). Other such simplifications have been pointed

out in the preceding technical discussion. It is interesting to note, however, that Meta-TS can model

many aspects of the human data even with these simplifications.

Meta-TS is also limited in certain ways as a computational model of human troubleshooting.

Our model focuses on ICT troubleshooting operators who routinely work on testing and repair,

and does not model technicians or engineers who are, for example, called in to help with this

task on certain occasions, such as when a very difficult problem is encountered. Although expert

technicians and engineers may also rely on associative and heuristic knowledge similar to that

observed in our study, they may also use other kinds of knowledge, such as topographic models or

causal knowledge. For example, Hale (1992) shows that humans use both weak causal heuristics

and domain-specific knowledge in learning symptom-fault associations in causal domains. Senyk.

Patil, and Sonnenberg (1989) argue that in medical diagnosis experienced diagnosticians apply a

variety of reasoning techniques, ranging from the association of symptoms and diseases to causal
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principles about diseases and first-principle analysis grounded in basic science. Based on research

in process control, maintenance, and medicine, Rasmussen (1993) outlines the importance of causal

knowledge related to the mental model of human operators during problem solving. While the

Meta-TS framework permits extension of the model, the current model does not represent these

kinds of knowledge. Consequently, the model is limited to situations when the shallow reasoning

methods are sufficient and may not be directly useful for situations where "deeper" knowledge of

the domain is necessary (for example, situations when the root cause of the problem is to be found).

Another limitation of the current model is the simplified view of the troubleshooter's interaction

with the environment. This interaction not only includes expert-novice interaction in supervised

learning situations, but also includes interaction with the equipment and artifacts in the environment

that the troubleshooter is situated in. In particular, our model focuses on cognitive processing and

not on situated interactions; while the former is important, the relationship between the two is an

important issue for future research.

Finally, while the learning strategies used in Meta-TS are similar to those used by a typical

"trained" operator, and the overall learning behavior of Meta-TS is also comparable with that

of a human operator, our analysis does not provide a detailed comparison with human thought

processes on individual problems. In particular, on a given set of problems, we have neither

shown that an individual human operator formulates the particular reasoning traces that Meta-

TS does, nor that he or she selects the particular learning strategies that Meta-TS does on each

problem in that set. Such a comparison is extremely difficult since the specifics of a reasoning

trace, and the corresponding choice of a learning strategy, depend on the domain knowledge and

level of expertise of the troubleshooter, the prior problems encountered, the availability of an

human expert, and other details. Furthermore, it is unclear how one could obtain protocols of

human troubleshooters that specified their reasoning traces or their strategy selection decisions in

sufficient detail to permit direct comparison on individual problem-solving episodes at the level of

granularity of the computational model.' Thus, Meta-TS should be viewed as a model of a typical

troubleshooting operator in a typical assembly line environment, and not as a detailed model of a

specific individual operator solving a specific set of problems.
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5 Discussion and related research

Diagnostic problem-solving has been studied by several researchers in cognitive science, artificial

intelligence, psychology, and human-machine systems engineering. Specifically, there has been

much work on troubleshooting in real-world domains, including that of Bereiter and Miller (1989)

in computer-controlled automotive manufacturing, Govindaraj and Su (1988) in marine power

plants, Katz and Anderson (1987) in program debugging, Kuipers and Kassirer (1984) in medicine,

Maxion (1985) in fault-tolerant hardware systems, and Rasmussen (1984) in industrial process

control. Much of this work is based on studies of human problem-solving. Rouse and Hunt (1984)

discuss various models of operator troubleshooting based on experimental studies in simulated fault

diagnosis tasks and present implications for training and aiding operators in these tasks. Research

in artificial intelligence has resulted in computational models of knowledge-based diagnosis (e.g..

Chandrasekaran, 1988) and qualitative reasoning (e.g., deKleer & Williams, 1987).

A detailed review of research in human troubleshooting and diagnostic problem-sol'ing is

outside the focus of this article, which is concerned with issues in learning and introspection. In

the remainder of this section, we will summarize related issues from the artificial intelligence and

psychology literatures.

5.1 Artificial intelligence, metareasoning and multistrategy learning

There are several fundamental problems to be solved before we can build intelligent systems

capable of general multistrategy learning, including: determining the cause of a reasoning failure

(blame assignment), deciding what to learn (learning goal formulation), and selecting the best

learning strategies to pursue these learning goals (strategy selection). We claim that a general

multistrategy learning system that can determine its own learning goals and learn using multiple

learning strategies requires the ability to reflect or introspect about its own reasoning processes

and knowledge. Pollock (1989) distinguishes between knowledge about the facts that one knows

and knowledge about one's motivations, beliefs and processes. Introspective multistrategy learning

is based on the both kinds of metaknowledge; we argue that introspective access to explicit

representations of knowledge and of reasoning processes is essential in making decisions about

what and how to learn.
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One form of introspection that has been implemented in many systems is the use of reasoning

traces to represent problem-solving performance; an early example of this approach was Suss-

man's (1975) HACKER program. Reasoning trace information has primarily been used for blame

assignment (e.g., Birnbaum et al., 1990) and for speedup learning (e.g., Mitchell, Keller, & Kedar-

Cabelli, 1986). In addition, we propose that such information, suitably augmented with the kinds

of knowledge represented in our Introspective Meta-XP structures, can be used as the basis for the

selection of learning strategies in a multistrategy learning system.

Many research projects in AI have demonstrated the advantages of representing knowledge

about the world in a declarative manner. Similarly, our research shows that declarative knowledge

about reasoning can be beneficial. The approach is novel because it allows strategy selection

systems to reason about themselves and make decisions that would normally be hard-coded into

their programs by the designer, adding considerably to the power of such systems. Meta-reasoning

has been shown to be useful in planning and understanding systems (e.g., Stefik, 1981, Wilensky.

1984). Our research shows that meta-reasoning is useful in multistrategy learning as well. To

realize this ability, our model incorporates algorithms for learning and introspection, as well as

representational methods using which a system can represent and reason about its meta-models.

From the artificial intelligence point of view, our approach is similar to other approaches

based on "reasoning traces" (e.g., Carbonell, 1986; Minton, 1988) or "justification structures"

(e.g., Birnbaum et al., 1990; deKleer et al., 1977; Doyle, 1979), and to other approaches that use

characterizations of reasoning failures for blame assignment and/or multistrategy learning (e.g.,

Mooney & Ourston, 1991; Park & Wilkins, 1990; Stroulia & Goel, 1992). A major difference

between these approaches and ours is our use of explicit representational structures (Introspective

Meta-XPs) to represent classes of learning situations along with the types of learning needed in

those situations, a type of knowledge that is crucial in multistrategy learning systems. Other types

of knowledge may also be important in multistrategy learning systems. For example, Pazzani's

(1991) OCCAM system has generalized knowledge about physical causality that is used to guide

multistrategy learning. In contrast, we propose specific knowledge about classes of learning

situations that can be used to guide learning strategy selection. Integration of these and other

approaches is still an open research issue.

Approaches to multistrategy learning fall into four broad categories, which we call strategy
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selection models, toolbox models, cascade models, and single mechanism models. The common

element in all these approaches is the use of multiple learning methods to allow the reasoning

system to learn in multiple types of learning situations.

In strategy selection models, the reasoning system has access to several learning strategies, each

represented as a separate algorithm or method. Learning involves an explicit decision stage in which

the appropriate learning strategy is identified, followed by a strategy application stage in which

the corresponding algorithm is executed. Methods for strategy selection also differ. Pazzani's

(1991) OCCAM system, for example, tries each learning strategy in a pre-defined order until an

applicable one is found; Reich's (1993) BRIDGER system uses a task analysis of the problem-

solving task to determine the appropriate learning strategies for each stage of the task; Hunter's

(1990a) INVESTIGATOR system represents prerequisites for application of each learning strategy;

and Ram and Cox's (1994) Meta-AQUA system uses characterizations of reasoning failures to

determine what to learn and, in turn, the learning strategies to use to learn it.

Toolbox models are similar to strategy selection models in that they too incorporate several

learning strategies in a single system. The difference is that these strategies are viewed as tools that

can be invoked by the user to perform different types of learning. The tools themselves are available

for use by other tools; thus, learning strategies may be organized as coroutines. An example of

this approach is Morik's (1991) MOBAL system, in which learning occurs through the cooperation

of several learning tools with each other and with the user. Another example of the toolbox

class is the PRODIGY system (Carbonell, Knoblock, & Minton, 1991). The system combines

explanation-based learning, case-based (analogical) learning, abstraction, experimentation. static

analysis, and tutoring. However, the system is designed as a research test-bed for analyzing and

comparing various methods, rather than as a system that chooses a learning method itself. Instead,

the experimenter chooses a learning module to run against a given problem-solving test suite.

In cascade models, two or more learning strategies are cascaded sequentially, with the output

of one strategy serving as the input to another. For example, Danyluk's (1991) GEMINI system

uses a cascade of explanation-based learning, conceptual clustering, and rule induction strategies.

in that order, to combine analytical and empirical learning into a single learning system. Clearly.

these categories of models are not exclusive of each other (e.g., a strategy selection system maN

choose to cascade learning strategies in certain circumstances), but they serve to characterize the
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major ways in which learning strategies may be integrated.

Finally, single mechanism models use a single underlying mechanism as a "weak method"

which can perform different types of learning depending on the situation. Examples of such

models are Laird, Rosenbloom and Newell's (1986) SOAR, and Tecuci and Michalski's (1991)

MTL. These approaches are sometimes contrasted with multistrategy approaches in that, although

they provide multiple methods for learning when characterized at a theoretical level, only a single

learning algorithm is implemented in the computer model. As discussed earlier, however, it is still

important to characterize the learning strategies that are implemented by (or that emerge from) the

single mechanism, and the circumstances under which different strategies are used by the system,

even in such systems as those above.

Our approach is an example of a strategy selection model. To develop a computer program that

can deal with the complexities of real-world troubleshooting, the system must deal with an incom-

plete world model, dynamic changes in the world which renders part of the world model obsolete,

and multiple forms of knowledge (much of it shallow). This requires the integration of multiple

learning methods (inductive, analytical, and interactive) in both supervised and unsupervised situ-

ations. Our experience with the Meta-TS system shows that a strategy selection architecture can

deal effectively with such problems. Furthermore, our approach provides a general framework for

integrating multiple learning methods. The learning strategies are not dependent on the domain.

but are, however, dependent on the types of knowledge used in the performance task.

5.2 Psychology, metacognition and human learning

Much of the metaknowledge research in artificial intelligence has focused on knowledge about

knowledge, or knowledge about the facts that one does or does not know (e.g., Barr, 1979; Davis,

1979; Davis & Buchanan, 1977). Much of the metacognition research in psychology has also

focused on similar issues, in particular, on cognitive processes, strategies, and knowledge having

the self as referent. Of particular interest is psychological research on metamemory which includes.

in addition to knowledge about knowledge, knowledge about memory in general and about the

peculiarities of one's own memory abilities (Weinert, 1987). The empirical results obtained from

the Meta-TS system support the claim that metaknowledge should also include knowledge about
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reasoning and learning strategies.

Experimental results in the metacognition literature suggest that introspective reasoning can

facilitate reasoning and learning. For example, Delclos and Harrington (1991) report that subject

conditions with general problem-solving skill training and those with both problem-solving and

metacognitive skill training demonstrate equal performance on a logical problem-solving task. With

greater task complexity, however, subjects with the problem-solving and metacognitive training

exhibit greater performance than either a control group or the group with problem-solving training

alone. Swanson (1990) establishes the independence of general problem aptitude from metacogni-

tive ability. Subjects with relatively high metacognitive ability, but low aptitude, often compensate

for low aptitude by using metacognitive skills so that their performance is equivalent to subjects

with higher aptitude. Our research extends these results by specifying computational mechanisms

for metacognitive processing, focusing in particular on the selection and use of learning strategies.

There are at least three important ways that metacognitive knowledge and capabilities bear on

work in introspective learning. First, and foremost, is the emphasis on cognitive self-monitoring.

This behavior is a human's ability to read their own mental states during cognitive processing

(Flavell & Wellman, 1977; Nelson & Narens, 1990; Wellman, 1983). Thus, there is a moment-

by-moment understanding of the content of one's own mind, and an internal feedback for the

cognition being performed and a judgement of progress (or lack thereof). Psychological studies

have confirmed a positive effect between metamemory and memory performance in cognitive

monitoring situations (Schneider, 1985; Wellman, 1983). This directly supports the hypothesis that

there must be a review phase when reasoning or a parallel review process that introspects to some

degree about the performance element in a cognitive system.

Second, our Meta-XP theory places a heavy emphasis on explicit representation. Trains

of thought, as well as the products of thought, are represented as metaknowledge structures,

and computation is not simply calculated results from implicit side-effects of processing. This

emphasis echoes Chi's (1987) argument that to understand knowledge organization and to examine

research issues there must be some representational framework. Although diverging from the

framework suggested by Chi, Meta-XP theory provides a robust form to represent knowledge

about knowledge and process. For example, Meta-XPs can represent the difference between

remembering and forgetting (Cox, 1994, Cox & Ram, 1992). Since forgetting is the absence of
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a successful retrieval (i.e., a mental event which did not occur), forgetting is difficult to represent

in most frameworks. An explicit representation of it, however, has been formulated in the Meta-

.AQUA system mentioned earlier, and used to reorganize memory indexes when forgetting occurs.

Moreover, forgetting is an important issue in additional machine learning (Markovitch & Scott,

1988) and cognitive psychology (Mensink & Raaijmakers, 1988; Wellman & Johnson, 1979)

research. Meta-TS implements a simple form of forgetting in which obsolete knowledge is deleted

once it is identified.

Finally, because the approach taken by the introspective learning paradigm clearly addresses the

issue of memory organization, it can assign blame to errors that occur from mis-indexed knowledge

structures and poorly organized memory. Although Meta-TS does not need to deal directly with the

mis-indexed knowledge problem,8 extensions of this approach to other types of tasks and domains

may need to do so, particularly if deep knowledge is required. Memory organization of suspended

goals, background knowledge, and reasoning strategies is as important in determining the cause of a

reasoning failure as are the goals, propositions and strategies themselves (Ram, Cox, & Naravanan.

in press). Thus, memory retrieval and encoding issues are relevant in deciding what to learn and

which learning strategy is appropriate. This claim is supported by the metamemory community s

focus on organizational features of memory and their relation to the human ability to know, what

they know, even in the face of an unsuccessful memory retrieval. Extending the Meta-TS model

to include a cognitive model of human memory (including memory organization) is an important

issue for future research.

One of the major differences between the manner in which humans learn and that in which

machines do is that humans perform dynamic metacognitive monitoring or self-evaluation. Humans

often know when they are making progress in problem solving, even if they are far from a solution.

and they know when they have sufficiently learned something with respect to some goal (Weinert.

1987). They know how to allocate mental resources and can judge when learning is over. Many of

the above reviews (e.g., Chi, 1987; Schneider, 1985; Wellman, 1983) cite evidence for such claims.

Research in Meta-XP theory is a step in the direction in adding this metacognitive monitoring

capability to Al systems, but this is beyond the capabilities of the present implementation of

Meta-TS.

It should be noted that the learning strategies represented in Meta-TS, or other strategy se-
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lection programs such as Meta-AQUA, are at a finer level of granularity than those examined by

much of psychology. For example, it would be misleading to assert that the types of learning

strategies studied by the metacognition community are similar to index learning, explanation-based

generalization, and other learning strategies used in Meta-AQUA, although Meta-TS's strategies

are closer in content to the cognitively plausible learning methods suggested by Anderson (1989)

and others. Instead, metacognition research focuses on a person's choice of strategic behaviors at

the level of cue elaboration, category grouping, and target rehearsal (in memory tasks); re-reading

of text, question generation, and keyword search (in text interpretation tasks); or solution check-

ing, saving intermediate results in an external representation, and comprehension monitoring (in

problem-solving tasks). However, many of the results from research on metacognition do support

the overall approach taken in this paper, that of using introspection to support the selection of

appropriate strategies in different situations. Although we are currently building computer systems

at what might be called the micro-level, it would be eventually be desirable to build systems that

integrate the kinds of behavior exhibited by human learners at the macro-level as well.

Finally, we would like t9 emphasize that our model of learning is agnostic about the issue of

"consciousness." Weinert (1987) argues convincingly that consciousness is a persistent unsolved

problem in metacognition. However, we make no claims about when people are aware of their

introspection, nor that active, strategic learning necessarily implies a conscious process. We would

expect some of the processing in our model to be deliberative and conscious, especially when the

reasoning system becomes aware of a failure in its reasoning process, but it is evident that people

possess and use metacognitive knowledge that they are sometimes not aware of. This issue is

beyond the scope of and orthogonal to the point of this article; the computational model presented

here may be used to take an intentional stance (Dennett, 1987) towards the learning process in which

the competence of the learner is modeled using goals, learning decisions, learning actions, and so

forth as the basic theoretical constructs, independent of the degree of conscious self-awareness of

these processes in human thought.
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6 Pragmatic implications of the model for education

While Meta-TS is intended as a model of learning, our results have several pragmatic implications

for the design of interactive learning environments. Major issues in developing an intelligent

tutoring system include what to teach and how to teach; specific points of importance are the

student model, the teacher model, the organization of knowledge, the simulation of the task, and

the interface to the learner (Psotka, Massey, & Mutter, 1988; Spohrer & Kleiman, 1992). Our

research suggests that it would be valuable to teach shallow troubleshooting knowledge, including

context-specific associative knowledge and general heuristic knowledge. Furthermore, since our

model of learning involves reasoning about actual troubleshooting experiences, and active pursuit of

identified learning goals through multiple learning strategies, we suggest that novice troubleshooters

be placed in simulated or actual problem-solving situations and encouraged to reason about what

they are doing and why they are doing it. This approach is consistent with recent approaches

suggested in the educational literature. For example, in Scardamalia and Bereiter's (1991) Teacher

C model, the teacher is concerned with helping students formulate their own goals, do their own

activation of prior knowledge, ask their own questions, direct their own inquiry, and do their

own monitoring of comprehension. Redmond (1992) suggests a similar approach to learning

through apprenticeship. His model is implemented in the CELIA system, which observes an

expert troubleshooter (in this case, a car mechanic) solving the given problem, reasons explicitly

about how it would solve the same problem, and determines what it needs to learn in order to

be able to explain and predict the expert's behavior based on the differences between the expert's

problem-solving processes and its own.

Several researchers have proposed simulation environments in which students play roles that

are connected to their goals, and whose successful completion requires acquisition of the skills to

be taught (e.g., Schank et al., 1994; Shute, Glaser, & Raghavan, 1988; van Berkum et al., 1991).

Van Berkum and his colleagues, for example, identify four aspects of the design of such systems:

simulation models, learning goals, learning processes, and learning activity. In their model.

students pursue learning goals with three dimensions: the type of knowledge, the representation

of that knowledge, and the generality and applicability of that knowledge. Learning occurs

through interaction with simulated environments using four types of learning actions (orientation,
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hypothesis generation, testing, and evaluation) which are guided by the learning goals. The learning

model implemented in Meta-TS provides a basis for the design of such learning environments. In

particular, we suggest that these environments provide facilities to encourage students to introspect,

question, and explore. Exploring the relationship between learning and education is a fruitful

direction for future research.

7 Conclusions

We have presented a computational framework for introspective multistrategy learning, which is a

deliberative or strategic learning process in which a reasoner introspects about its own performance

to decide what to learn and how to learn it. The reasoner introspects about its own performance

on a reasoning task, assigns credit or blame for its performance, identifies what it needs to learn to

improve its performance, formulates learning goals to acquire the required knowledge, and pursues

its learning goals using multiple learning strategies. In this article, we have presented a model of

human troubleshooting based on this framework, focusing in particular on the learning aspects of the

model. The model is implemented in a computer program which models human troubleshooters and

also provides a case study in the use of the computational framework for the design of multistrategy

machine learning systems. Our approach relies on a declarative representation of meta-models

for reasoning and learning. The resulting computational model represents a novel combination of

metacognition and multistrategy learning and provides a framework for cognitive modeling as well

as the design of artificial intelligence systems.

In this article, we have presented a particular case study of an introspective multistrategy

learning system for the complex task of diagnostic problem-solving on the assembly line of

a real-world manufacturing plant. The research was based on observations of troubleshooting

operators and protocol analysis of the data gathered in the test area of an operational electronics

manufacturing plant. The model was implemented in a computer system, Meta-TS, which uses

multiple types of knowledge to troubleshoot printed-circuit boards that fail in the test area. Meta-TS

was evaluated on a series of troubleshooting problems, including actual problems encountered by

the human operators in the manufacturing plant. The results were evaluated both qualitatively and

quantitatively to determine the efficacy of the learning methods as well as to compare the model
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to human data. The results show that the model can be computationally justified as a uniform,

extensible framework for multistrategy learning, and cognitively justified as a plausible model of

human learning.
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TEST AND REPAIR AREA

In-circuit Test
Unpopulated SMT LINE Populated

PCB PCB * Troubleshoot

Functional Test

PCB for packaging

Figure 1: A schematic of the NCR electronics manufacturing plant.
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"R24 has a reading slightly lower than nominal. Therefore, the operator suspects that a bad IC

connected to it is loading it down. After checking the schematics, he sees that u65 is connected

to it. This is a known bad part. He lifts the leg connected to it and ohms out the resistor. The

resistor now measures 10K, so he knows that u65 is the culprit. He replaces the IC (and attributes

the problem to the vendor)."

Figure 2: Sample troubleshooting protocol from Cohen (1990, p. 206).
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Knowledge Sources

Heuristics Associations

ICT Perform Action
Ticket Inferencer Action (Either Diagnosis
Reading )0 pronounce diagnosis ,.,

(Control methods) or
PCB perform plan step)
Information

intermediate status information

Figure 3: The problem-solving module for the troubleshooting task.
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Troubleshooting board #6

ICT ticket information

These are board faults
TA 7052 MAX Processor

r243 has failed
Measured = 18.000000 ohms
Nominal = 10.000000 ohms

Entering problem solver

Getting symptom information from ticket
r243 has failed

Looking for associations for r243
No associations found

Association search unsuccessful
Diagnosing by heuristics

Looking for heuristics

Applying heuristic-3
Measured value is much higher than nominal value
Suspecting an openidefective part

Ohming out on r243
Ticket reading verified

Percrming visual inspection
Defective part verified

Diagnosis: Defective part, r243 is defective
Repair action: Replace r243

Figure 4: An example of a problem-solving episode.
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Actions, Knowledge and Diagnosis
(from Problem-Solving Module)

ICT Ticket
Reading
& PCB Explanation
Information Facility
(from World')

" Reasoning Explainer
Trace

Tests on World Introspector
(Decide whether to learn)

Reasoning
Trace +

Learning Goal

Credit
Assignment

Hypothesis Generation ei Actions

Hypothesis Verification

Verified
Hypothesis

Perform Method Changes to
Select PKnowledge

Learning Action (Either Sources
Strategies Learning (Methodl- transfer knowledge°u

Strategy or perform learning step

intermediate status information

Figure 5: Architecture of the multistrategy learning module.
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/ / Definition of class Introspector

class Introspector{

private:

int tableStrategiesCondition [MAXPARAMETERS];
/ Solution (I - correct. 0 - incorrect or no solution)
/ Heuristics (I - yes. 0- no)
/ Associations (I - yes, 0 - no)
/ Expertinput (I -yes, O-no)

int qAGoal ; / True if learning goal requires question-answer session

public:

Introspector (void) ; Default constructor
TraceCollection traces; Collection of traces for postponement
void f illTable (void) ; Method to fill the tableStrategiesCondition
void executeAppropriateStrategy (void);

/ Method to execute appropriate strategy based on table
void strategyUnH(void) ; / Strategy for completely unsupervised learning

/ / when heuristics used for problem solving
void strategySH (void) ; / Strategy for both supervised and unsupervised learning

/i when heuristics used for problem solving
void strategySHP (void); / strategy for both supervised and unsupervised learning

/ when heuristics used for problem solving
/ / and learning goal needs to be suspended

void strategyDeli (void) ; / Strategy to delete obsolete associative knowledge
/ through supervisory input

void strategyDeilin(char* inputStr);
Strategy to delete obsolete associative knowledge

through unsupervised reasoning
vocd learningMethod(void) ; The learning control method
void rei'niializeTable(void);

Reinitializes tableStrategiesCond
int solution (void) ; Determines if solution is correct by performing tests on

the world and comparing reasoning trace
int heurist ics (void); Determines if reasoning process involved heuristic knowledge

by searching through reasoning trace
int associations (void): Determines if reasoning trace involved associated knowledge

by searching through reasoning trace
int expertlnput (void) ; Determines if expert input is available

by interacting with user
void setQAGoal (int val ) Creates learning goal for question-answer session
int getQAGoal (void) Returns learning goal for question-answer session
void preQA char* inString) ; Pre questio-answer steps
void qA(void); Asks question and gets answer

void appendTrace (void); Utility methods
void displayTrace (void);
void displayTrace (char* input)

void removeTrace (void);
void removeTrace (char* input)
Boolean inputTrackTrace(char* input);

Figure 6: Implementation of introspector as a class in C++.
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Troubleshooting board #13

ICT ticket information

These are board faults
TA 7052 MAX Processor

r22 has failed
Measured = 16.000000 ohms
Nominal = 20.000000 ohms

Entering problem solver

Step #1
CONTROL METHOD: get symptom information from ticket
PRECONDITIONS: ticket available
MET BY: input
RESULT: r22 has failed

Step #2
CONTROL METHOD: find associations for r22
PRECONDITIONS: symptom available
MET BY: r22 has failed
RESULT: no associations for r22

Step *3
CONTROL METHOD: find heuristics
PRECOND:T:ONS: symptom available AND no associations
MET BY: r22 has failed AND no associations for r22
RESULT: heuristic-i found

Step 24
HEURISTIC: apply heuristic-!
PRECCND::TCNS: measured value is slightly >ower than nominal value
MET BY: ticket information
RESULT: oh.ning-out recommended

Step $5
ACTION: ohing-out on r22
PRECONDtTIONS: symptom avaiianle AND action recommended
MET BY: r22 has failed and ohming-cut recommended
RESULT: bogus ict ticket

Diagnosis: bogus ict ticket

Entering learner

Analyzing Trace Meta-XP steps 1-5
SYMPTCM: r22 has failed
DIAGNOS:S: bogus ict ticket
0UTCCME: diagnosis correct

Using Introspective Meta-XP
GOAL: learn assoc:ation for r::
STRATEGY: unsupervised learning of ssscc:ations

Invoking learning strategy
Creating new association for r22

Meta-TS now has associations for
r243, u37, r254, r200, r!21, u73. r::

Figure 7: An example of the strategy of unsupervised learning of associations in Meta-TS. Here.
Meta-TS has just learned the association that r22 failures often indicate a "bogus" ticket reading.
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Troubleshooting board #2

ICT ticket information

These are board faults
TA 7052 MAX Processor

r24 has failed
Measured = 21.200001 ohms
Nominal = 10.000000 ohms

Entering problem solver

Step #1
CONTROL METHOD: get symptom information from ticket
PRECONDITIONS: ticket available
MET BY: input
RESULT: r24 has failed

Step #2
CONTROL METHOD: find associations for r24
PRECONDITIONS: symptom available
MET BY: r24 has failed
RESULT: no associations for r24

Step #3
CONTROL METHOD: find heuristics
PRECONDITIONS: symptom available AND no associations
MET BY: r24 has failed AND no assoc:ations for r24
RESULT: heuristic-3 found

Step *4
HEUR:ST:C: apply heuristic-3
PRECONDITIONS: measured value is much higher than nominal value
MET BY: ticket information
RESULT: ohming-out and visual-inspection recommended

Step #5
ACT:ON: ohming-out on r24
PRECONDDTIONS: symptom available AND action recommended
MET BY: r24 has failed and ohming-out recommended
RESUL7: ticket reading verified

Step 06
ACT:ON: visual-inspection on r24
PRECONDITIONS: symptom available AND action recommended
MET BY: r24 has failed and visual-inspection recommended
RESULT: r24 is missing

Diagnosis: missing part, r24 is missing

Entering learner

Analyzing Trace Meta-XP steps 1-6
SYMPTOM: r24 has failed
DIAGNOS:S: missing part, r24 is missing
OUTCOME: diagnosis incorrect, u37 is defective

Using Introspective Meta-XP
GOAL: learn association for u37
STRATEGY: supervised learning of associations

invoking learning strategy

Is expert input available for this episode? >>e)s
Enter left-hand-side of association: >u37
Select right-hand-side of association:
a. Bogus ICT ticket
b. Replace defective part
c. Perform visual inspection followed by diagnosis
d. Perform lifted leg procedure followed by diagnosis
>>C

Creating new association for u37

Meta-TS now has associations for
r243, u37

Figure 8: An example of the strategy of supervised learning of associations in Meta-TS. Italics
indicate user input during this episode.
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Tables

Table 1: Algorithm for introspective multistrategy learning in Meta-TS. Note that step 2E is not

necessarily performed immediately after 2D; in some cases, it may be performed at a later time (for

example, as in the case of the postponement strategy in which learning is deferred until a suitable

opportunity arises).

Step 0: Perform troubleshooting and record in Trace Meta-XP, including reasoning steps and

knowledge (associations or heuristics) used in each step.

Step 1: Analyze Trace Meta-XP to identify reasoning failures, including incorrect diagnosis,

inability to create a diagnosis, and correct diagnosis but through inefficient problem-solving.

Step 2: If analysis reveals a reasoning failure, then learn:

Step 2A: Characterize type of reasoning failure

Step 2B: Use Introspective Meta-XPs encoded in introspector to determine cause of failure

Step 2C: Use analysis of type and cause of failure to determine what to learn

Step 2D: Choose appropriate learning algorithm

Step 2E: Apply learning algorithm
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Table 2: Examples of associative and heuristic knowledge used in the problem-solving module.
r# indicates the number of a resistor component, and u# indicates the number of an IC (integrated
circuit) component.

Associative knowledge

"* r254 is often damaged. Visually inspect the part. If it is damaged, replace the part.

"* If rl or r2 fails, the ticket reading is "bogus."' Output the diagnosis "Bogus ICT ticket."

"* u56 and u65 are known bad parts. Use the "lifted leg" procedureb to identify the bad part(s) and
replace them.

"* r228, r239 and r279 are connected to u5 1. If one of these has failed with a low reading, u5 i should
be replaced.

Heuristic knowledge

" If the measured reading of a resistor is slightly higher than the nominal value on the ICT ticket.
perform the "visual inspection" procedure. If the defect is found, terminate the search, otherwise
output the diagnosis "Unable to make an inference" and perform appropriate repair action.

" If the measured reading of the resistor is slightly lower (qualitatively) than the nominal value, perform
the "ohming out" action.c If the diagnosis is "Bogus ICT ticket", terminate the search. otherwise
perform the "check schematics"action and make an ordered list of faulty ICs. If any of these can
be fixed by association-based search, terminate search, otherwise test each of these ICs to determine
the faulty component. If a defective component is not found, terminate the search and output the
diagnosis "Unable to make an inference."

'A "bogus" ICT ticket reading is typicall. caused when there is a poor connection between the board and the tester.

bDuring the "lifted leg" procedure the operator uses a dental tool to tug at each leg on a component to find legs which
have not been soldered to the pad.

"c'Ohming out" refers to using a multimeter it check the resistance of a connection on the board. This procedure
involves touching the two probes on the multimeter to each end of the connection.

d"Check schematics" refers to the procedure followed by an operator to find the list of parts connected to a particular

component (using the schematic page number for pans provided by the ICT ticket).
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Table 3: Examples of troubleshooting actions, control methods, and repair actions in the problem-
solving module.

Troubleshooting actions

"* Perform visual inspection.

"* Check for faulty IC that lowers resistance.

"* Ohm out on a resistor.

* Check schematics.

Control methods

* Look at the symptom information on the ICT ticket first.

* Determine if there is an association for that symptom in memory; if so, invoke it and terminate the
search.

* Perform the "visual inspection" action. If the defect is found, suggest appropriate repair action and
terminate search. Use the appropriate heuristics and determine the repair action depending on the
qualitative difference between the measured and nominal reading in the ticket.

Repair actions

9 Identify the part number of the defective part and replace it with an equivalent part.

* Output "Bogus ICT ticket reading" to indicate a suspected false ICT ticket reading.

* Identify the part number of the missing part and install an appropriate part.

* Output "Unable to make an inference" to indicate insufficient knowledge to arrive at an inference that
indicates a repair action.
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Chapter 1

Learning, Goals, and Learning
Goals

Ashwin Ram and David B. Leake

1 Why goals?

In cognitive science, artificial intelligence, psychology, and education. a grow-
ing body of research supports the, view that learning is largely a goal-directed
process. Experimental studies show that people with different goals process in-
formation differently: work in machine learning presents functional argumlent.
for goal-based focusing of learner effort. Recent work in these fields has focussed
on issues of how learning goals arise, how they affect learner decisions of when
and what to learn, and how they guide the learning process. It is increasingly
evident that investigation of goal-driven learning can benefit from bringing these
perspectives together in a multidisciplinary effort (Leake & Ram. 1993).

The central idea underlying goal-driven learning is that, because the value of
learning depends on how well the learning contributes to achieving the learner's
goals. the learning process should be guided by reasoning about the information
that is needed to serve those goals. The effectiveness of goal-driven learning de-
pends on being able to mak,. good decisions about when and what to learn, on
selecting appropriate strati,,Ivs for achieving the desired learning, and on guid-
ing the application of the ,i ,,,n strategies. Research into such topics includes
the development of computational models for goal-driven learning, the testing
of those models through l,,)'liological experiments and empirical experiments
with computer programs. th,, justification of the models through functional ar-
guments about the role and utility of goals in learning, and the use of models
of goal-driven learning in vmid•ng the design of educational environments. The
common themes in these r..,'ar,'h efforts are the investigation of types of learn-
ing goals, the origins of I.ariiti goals. and the role of goals in the learning
process.

Research on goal-dri,.n I, .triiiinit i artificial intelligence has been motivated
largely by computational ar•,jnn,,s. The problem of combinatorial explosion
of inferences is well knowin in ;ian\ realistic task domain, time and resource



constraints prohibit consideration of all but a few of the possible inferential
paths. Consequently, any reasoner. human or machine, must focus its attention
and resources on pursuing those inferential paths that are likely to be most
useful. Similarly, in any realistic situation, there are several different types of
learning that a reasoner might perform, several kinds of new knowledge that a
reasoner might acquire, and several, kinds of reformulation or reorganization of
existing knowledge that a reasoner might carry out. Again. due to time and
resource constraints it is only practical to perform a few of these operations.
Consequently, the reasoner must focus its attention and resources on executing
the learning operations that are likely to be most useful. Because the utility of
an inference or a piece of knowledge can best be evaluated relative to a particular
task or goal, goal-based considerations must guide reasoning and learning.

In addition to these computational arguments for goal-driven learning, re-
search in goal-driven learning has a cognitive basis in psychological research.
This research has established much evidence for the influence of goals and be-
liefs on human learning, and for the use of active, strategic. and goal-driven
processes in many kinds of learning that humans perform. However, many
questions remain concerning the kinds of goals that people pursue. the condi-
tions under which those goals influence learning, and the kinds of learning that
are influenced by those goals.

Research in cognitive science combines the cognitive perspective of psychol-
ogy with the computational perspective of artificial intelligence, developing com-
putational models of human learning that are evaluated using computational
metrics as well as by comparison with human performance. Research in edu-
cation has also been concerned with psychological data about human learning.
but from a pragmatic perspective. This research has attempted to use empirical
evidence to guide the design of instructional and educational scenarios so as to
facilitate learning, taking as its starting point the evidence for facilitation of
certain kinds of learning by particular kinds of goals. These scenarios have also
been used as the basis for further psychological experimentation to validate the
underlying theories. In this chapter. we describe a framework for goal-driven
learning and its relationship to prior and current theories from each of these
perspectives.

2 An everyday example

Goal-driven learning is triggered when a reasoner needs to learn in order to
improve its performance at some task. A goal-driven learner determines what
to learn by reasoning about the information it needs, and determines how to
learn by reasoning about t le relative merit of alternative learning strategies in
the current circumstances. For example. for a first-time stereo buyer. the goal of
getting good buy on a stereo may give rise to at least two learning goals: a goal
to learn the best sources for sound equipment and to a goal to learn how to judge
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the merits of competing equipment. Each of these learning goals may trigger
learning subgoals. In order to learn the best place to buy sound equipment, the
buyer may first have to learn general criteria for what constitutes a good store for
buying sound equipment. and then specifics about prices, service, etc. to classify
different stores. In order to learn how to judge particular equipment, the buyer
will have to learn about the classes of alternatives available and about specific
equipment within those classes. Thus some learning goals involve gathering
information in the external world, while others involve reformulating or changing
information that is already known, by operations such as forming generalizations
or reorganizing memory.

In order to perform the desired learning, the stereo buyer must select strate-
gies for accomplishing each of its learning goals. For example, the buyer may
choose between learning strategies including asking others' opinions, reading
magazine articles, forming inductive or explanation-based generalizations from
demonstrations of equipment. or even disassembling equipment to determine
the quality of its electronic components. Learning strategy selection depends
on factors such as the buyer's prior knowledge. the buyer's resources (e.g.. how
much time the buyer can spend on the shopping process). opportunities (e.g..
happening to meet an expert on sound equipment at a party). and the buyers
own abilities (e.g.. whether the buyer has the expertise to judge the quality of
equipment by disassembling it).

This example illustrates the value of goal-driven learning in focusing learner
effort, and also suggests the range of roles that goals can play in influencing
learning. Goals determine how much effort to allocate to performance tasks
(e.g.. the task of buying a stereo), indirectly influencing the resources available
for the learning that will be performed as part of that task. Goals also determine
the focus of attention when new information is received as input (e.g.. focusing
attention on announcements of stereo sales). They determine what should be
learned (e.g.. determining that it is worthwhile to generalize about relationships
between store types and prices). They give criteria for evaluating the results of
learning and deciding what learned information to store (in this example. the
value of learning is its usefulness for guiding the shopping decision), Table 1
summarizes these and other possible roles of goals in learning. In the following
sections we concentrate on developing a framework and terminology on which to
base our analysis of goal-driven learning, and after developing that framework
we return to the ways that goals affect learning in section 8.

3 Towards a planful model of learning

As the previous example illustrates, a goal-driven learner makes decisions about
what. how, and when to learn in order to further its goals. In this view. learning
can be considered a "planful" process (e.g., Etzioni, Hanks. Weld. Draper. Lesh.
& Williamson. 1992: Hunter. 1990/chapter 2: Leake/chapter 20: Michalski S,
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Guiding the performance task by:

"* Determining the resources made available to the performance task

"* Guiding the control or search procedure used in the performance task

"* Guiding retrieval of plans. problem solutions, and other types of knowledge

"* Focusing attention on certain aspects of the input

"* Guiding the evaluation of the outcome of the performance task

Guiding the learning task. by

"* Specifying the target of learning (desired output of a learning algorithm)

* Selecting the learning algorithms to be used

"• Constraining the learning process (for example. influencing the policies
under which the learning algorithms operate)

"* Focussing the search for information needed to carry out the learning

"* Determining when learning should be attempted

"• Aiding evaluation of results of learning with respect to the desired output

Guiding storage, by:

"* Selecting what to store

"* Determining how learned knowledge is indexed

Table 1: \'a. , in which goals can influence learning.
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Ram, chapter 21; Pryor & Collins. 1992/chapter 10: Ram & Cox. 1994/chap-
ter 7; Ram. Cox. & Narayanan, chapter 18; Ram & Hunter, 1992/chapter 4:
Redmond, 1992: Quilici. in press; Schank & Abelson, 1977; Xia and Yeung.
1988/chapter 12). This learning process is analogous to models of problem solv-
ing in which the reasoner uses task goals to formulate action plans for achieving
these goals (e.g., Newell & Simon. 1972: Greeno & Simon. 1988: VanLehn, 1989).
Learning actions or schemas are selected, combined, and invoked appropriately
on the basis of existing learning goals and available environmental opportunities
for learning. Learning is a behavior explicitly carried out to seek information.
driven by needs arising from the reasoner's performance on a task that learning
is intended to facilitate, and mediated by the formulation and manipulation of
explicit learning goals.

The motivation for the goal-driven approach is to control processing in a rich
world. Simply put, knowledge that is valid in principle need not necessarily be
useful (Mitchell & Keller. 1983): thus. it is desirable to avoid the effort involved
in learning knowledge that does not contribute to the reasoner's overall purpose
For example, Ram and Hunter (1992/chapter 4) argue that. due to the corn-
putational complexity of reasoning about the combinatorially large number of
inferences that are possible in any realistic situation, it is essential to focus infer-
ential and learner effort on deriving those pieces of knowledge that are likely to
be most useful. Hunter (1990/chapter 2) argues that inference during learning
(such as inductive inference) is also potentially combinatorially explosive and
that explicit consideration of desirable knowledge should be used to guide this
inference. Likewise. Leake (1992) argues for similar reasons that decisions about
what to learn about new situations must be driven by characterizations of the
learner's information needs. Theoretical analyses (desJardins, 1992/chapter 8:
Etzioni, 1992: Francis & Ram, 1993: Gratch & DeJong. 1993). as well as em-
pirical investigations of the utility of learning (Minton, 1990/chapter 3: Tambe,
Newell, & Rosenbloom. 1990) provide support for this argument. Active. goal-
driven learning implies the ability to make explicit decisions about what, when.
and how to learn (Ram. Cox. & Narayanan/chapter 18). Thus some of the
motivations for goal-based approaches include (see also Cox & Ram. 1994):

Alleviating problems of computational complexity: The ability of a
reasoner to make decisions about its reasoning and learning processes helps
to alleviate problems caused by the computational complexity of reasoning
in an open world, by enabling the reasoner to focus its efforts towards
processing that serves its goals (Cox, 1993: Hunter, 1990/chapter 2: Leake.
1992; Leake/chapter 20: Ram & Hunter, 1992/chapter 4). An analysis
of the utility of learning can help in determining the target of learning
(desJardins, 1992/chapter 8), in guiding learning processes (Gratch &
DeJong, 1993: Gratch. Deiong, & Chien, 1994: Provost, 1994), and also
in deciding whether to learn at all (Markovitch & Scott. 1993: Minton.
1990/chapter 3).
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" Facilitating the use of opportunities to learn: If a reasoner does not
have sufficient resources at the time it realizes it has a need to learn, or
if the requisite knowledge is not available at that time, the reasoner can
suspend its learning goals in memory so that they can be retrieved and pur-
sued at, a later time (Hunter, 1990/chapter 2; Hammond. Converse, Marks.
& Seifert, 1993: Ram. 1991. 1993: Ram, Cox. & Narayanan/chapter 18:
Ram & Hunter, 1992/chapter 4).

" Improving the global effectiveness of learning: Taking goal priori-
ties and goal dependencies into account when deciding what to learn and
how to coordinate multiple learning strategies improves the effectiveness
of learning in a system with multiple goals. Learning strategies. repre-
sented as methods for achieving learning goals. can be chained, composed.
and optimized, resulting in learning plans that are created dynamically
and pursued in a flexible manner (Cox. 1993: Cox L- Ram. 1994: Gratch.
DeJong, &- Chien. 1994: Hadzikadic &- Yun. 1988: Hunter. 1990/chap-
ter 2: Michalski. 1993: .Mihalski & Ram. chapter 21: Ram &- Hunter.
1992/chapter 4: Redmond. l992: Stroulia k Goel. 1994).

" Increasing the flexibility of learning: In situations involving multiple
reasoning failures, multiple active and suspended learning goals. multiple
applicable learning strategies. and limited resources, direct mapping from
specific types of failures to individual learning strategies is impossible. and
an active. planful approach becomes necessary. For a given failure, there
may be more than one algorithm which needs to be applied for successful
learning and. conversely, a given algorithm may apply to many different
types of failures (Cox. 1993: Cox & Ram. 1994: Krulwich, Birnbaum. &
Collins. 1993: Ram. Cox. k Narayan an/chapter 18). A planful model of
learning allows decoupling of many-to-many relationships. leading to more
flexible behavior (('ox. 1993. Cox &, Ram. 1994).

" Improving managenient of interactions between learning pro-
cesses: Explicit forimulation of learning goals facilitates detection of de-
pendency relationhip,. .o that goal violations can be avoided (Cox. 1993.
Cox &_ Ram. 1994) Whn multiple items are learned from a single episode.
the changes result ini, from one learning algorithm may affect the knowl-
edge structures u,."d 1.\ another algorithm. Such dependencies destroy
any implicit assumilw,,n of independence built into a given learning al-
gorithm that is u,,ed in isolation. For example. one learning algorithm
may split a concept ,l.tinition into separate schemas or otherwise modify
the definition. Therf,,r,. anm indexing algorithm that uses the attributes
of concepts to oreat', ind'.", mist necessarily follow the execution of any
algorithm that chana,- Ow ,'miceptual definition.

Psychological evidenc, al-, supports the existence of goal-based influences
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on human focus of attention, inference, and learning (e.g., Barsalou, 1991/chap-
ter 5: Faries &L Reiser, 1988 Hoffman, Mischel, & Mazze. 1981: Ng & Bere-
iter. 1991/chapter 14; Seifert 1988, Srull & Wyer, 1986; Wisniewski & Medin.
1991/chapter 6; Zukier, 1986; see also discussion by Hunter, 1990/chapter 2).
These ideas are related to the "goal satisfaction principle" of Hayes-Roth and
Lesser (1976), which states that more processing should be given to knowledge
sources whose responses are most likely to satisfy processing goals. and to the
".relevance principle" of Sperber and Wilson (1986), which states that humans
pay attention only to information that seems relevant to them. Those principles
make sense because cognitive processes are geared to achieving a large cogni-
tive effect for a small effort. To achieve this, the understander must focus its
attention on what seems to it to be the most relevant information available.
Goals can facilitate learning even when they are not generated internally by the
reasoner: for example. Steinbart (1992) shows that asking users questions (i.e..
"'creating" knowledge goals in people) can help them learn from a computer-
assisted training program. and Patalano. Seifert, and Hammond (1993) show
that presenting users with a goal and a plan to achieve it can facilitate later
detection of relevant features of a situation. There is also much research on thl
origins of goals: for example. Graesser. Person, and Huber (1992) discuss several
types of questions. or goals to seek information, and the cognitive mechanisms
that generate them. Many of these are related to the learning goal formulation
mechanisms discussed here.

The goal-driven learning framework does not imply that all processing is
explicitly goal-driven. A reasoner that was completely goal-driven would only
notice what it was looking for already: it would not be able to respond to
and learn from unexpected input. Instead. it is reasonable to assume that there
would be some automatic. bottom-up. or non-goal-driven processing during rea-
soning and learning, which would support strategic, top-down. or goal-driven
processes such as those discussed here (e.g.. Barsalou/chapter 17: Kintsch. 198S:
Leake. 1992: McKoon &- Ratcliff. 1992: Ram. 1991).

A significant body of psychological research points to the influence of
"*metacognition--cognit ion by a person concerning that person's own cognitive
processes-in human performance (e.g.. Forrest-Pressley, MacKinnon &- Waller.
1985: Weinert, 1987; Wellman, 1985. 1992), Gavelek and Raphael (1985) discuss
a form of metacognition. called metacomprehension, which addresses the abil-
ities of individuals to adjust their cognitive activity in order to promote more
effective comprehension. in particular, the manner in which questions generated
by sources external to the learner (i.e.. from the teacher or text). as well as those
questions generated by the learners themselves, serve to promote their compre-
hension of text. White and (tinstone (1989) argue that resolution of conflicting
beliefs and permanent concept nal change requires "metalearning" -control over
one s learning. For example. they discuss a study by Gauld (1986) that shows
that students who learn new scientific beliefs often revert to their original beliefs
over time because they have merely accepted the new knowledge without any



real commitment to it. They argue that deep reflection on one's beliefs is a key
part of the awareness and control over one's learning, and suggest methods for
promoting metalearning in science classrooms.

It is clear, of course, that humans cannot exert explicit meta-control over
all their learning processes, and the level of control that can be exerted, as well
as how it is exerted, remain open questions. It is also possible (though. in our
opinion, unlikely) that it may turn out not to be efficient to use this frame-
work as a technological basis for the design of computer programs that learn.
Nevertheless, the framework presented here may be used to take an intentional
stance (Dennett, 1987) towards a reasoner for the purposes of building a com-
putational model of learning. In such a stance, the competence of the reasoner
can be modelled using goals, learning decisions, learning actions, and so forth as
the basic theoretical constructs in task-level and algorithm-level descriptions of
the reasoner. That stance can be taken without any commitment to existence
of these constructs at the implementational level of. say. neural representations
and processes in the human brain, or to the degree of conscious self-awareness
of these processes in human thought.

4 A framework for goal-driven learning

In order to form a unified view of the diverse research results on goal-driven
learning, we propose a general framework that describes the goal-driven learn-
ing process. While no single piece of research to date has investigated this
framework as a whole or exactly as stated, the framework serves to provide an
integrative structure into which individual research efforts fit as pieces of the
puzzle of goal-driven learning. The key idea behind our framework is to model
learning as an actire (explicitly goal-driven) and strategic (rational and delib-
erative) process in which a reasoner, human or machine, explicitly identifies its
goals in learning and attempts to learn by determining and pursuing appro-
priate learning actions via explicit reasoning about its goals. its abilities, and
environmental opportunities.

In this framework, learning is motivated by the performance tasks that the
reasoner is attempting to perform in the world. The performance tasks give rise
to task goals, as well as subgoals of those goals, and subtasks to achieve them. As
the tasks and subtasks are performed, the reasoner formulates explicit learning
goals to perform types of learning which, if successful, would improve its ability
to carry out those performance tasks or subtasks. The learning goals. in turn.
guide the learning behavior of the reasoner, leading it. to focus attention, allocate
resources, and. select appropriate learning algorithms or learning strategies when
opportunities to learn arise. In our previous example, the top-level task goal
would be to get a good buy on a stereo, which would spawn subtasks such as
going to a store and purchasing the stereo. These subtasks give rise to learning
goals to learn information needed to select the store and the stereo to buy. Some
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Reasoner An intelligent system, human or machine.
Performance task(s) Overall task(s) that the reasoner is performing that create an effect

on the external world.
Task goals Specific goals and subgoals to be accomplished in order to accom-

plish the performance task.
Learning goals Goals to learn (including learning by acquiring knowledge. reor-

ganizing or reformulating knowledge, verifying hypotheses. etc.).
These include both a description of the needed information and
information about the task for which the information is needed.

Strategies or methods Processing steps that accomplish a goal.
Algorithms Computational formulations of strategies.
Reasoning trace Record including information on goal-subgoal decomposition of

goals. choice of methods to accomplish goals and subgoals. and
other decisions taken in pursuing those goals, as well as the bases
for these decisions, results of reasoning actions. alternative' coures
of action, etc.

Table 2: Summary of terminology.

of those learning goals may seek to gather information about the external world.
while others may seek to create generalizations, test hypotheses. reorganize
memory. or otherwise change existing knowledge. Those learning goals prompt
the choice of learning strategies such as "shopping around." looking at reviews
in magazines, and so forth.

The goal-driven learning process involves not only learning about the world.
but also learning to improve the reasoner's own reasoning process. In order
to identify the learning that needs to occur, the reasoner needs to be able to
analyze its reasoning process in addition to the knowledge that the reasoner
invokes during the reasoning process, To facilitate this. the reasoner maintains
a reasoning trace of its internal decision-making. The reasoning trace provides
the basis for introspEctzt r, asoning or meta-reasoning to guide learning and
improve its reasoning performance. Table 2 summarizes the terminology we
will use in our framework

More concretely, goal-driven learning can be modeled as a two-step process.
The first step involves the generation of learning goals based on the performance
tasks and task goals of t he reasoner. This step can be thought of as the process
of deciding what to learn, and rpsuhilt. in the formulation of learning goals that
specify the desired learning that is. to occur as well as the origin of the need for
this learning. The second tep ievolves the pursuit of learning goals based on
the reasoner's needs. its reis irce•. and on environmental factors that determine
the timeliness of pursuing ,-rtain learning actions in a given situation. This
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step can be thought of as the process of deciding how and when to learn and
carrying out the learning. When the learning actually occurs, this step results
in the satisfaction of one or more of the reasoner's learning goals.

Step 1: Generating learning goals: Figure 1 describes the process by
which learning goals are generated. The reasoner is assumed to be pursuing a
performance task that can be characterized in terms of the current situation
and task goals specifying the desired result of the task. In the stereo example.
the situation might be that the shopper lives in New York, knows nothing about
stereos. and has $500 to spend: the task goal would be to buy a stereo that was
a good value for the $500 price range.

Given the performance task. the reasoner performs reasoning in support of
that task and maintains a trace reflecting its reasoning process. The reasoning
trace records the goal-subgoal decompositional structure of the task goals. the
choice of methods for achieving them and other decisions taken. the factors
influencing those decisions, and descriptions of other reasoning actions (e.g..
attempts to retrieve information) and their outcomes (Carbonell, 1986: Ram &"
Cox, 1994/chapter 7). For example. forming an executable plan to get a good
buy on a stereo requires knowing which stereo to buy and where to buy it. If the
reasoner does not know, a reasoning failure occurs because current knowledge
is insufficient to make a decision.

At a suitable point in processing. the reasoning trace and its results are
evaluated in light of the reasoner's task goals. If any problems arose during
processing, learning is needed to enable the reasoner to avoid similar problems
in the future. In being driven by deficiencies in the reasoner's knowledge. the
process for generating learning goals is in the spirit of impasse-driven or failure-
driven learning (e.g., Chien. 1989: Collins & Birnbaum, 1988: Hammond, 1989:
Kocabas. 1994: Laird. Newell, & Rosenbloom. 1986: Mooney & Ourston. 1993:
Mostow & Bhatnagar. 1987: Newell, 1990: Owens. 1991: Park & Wilkins. 1990:
Ram & Cox. 1994/chapter 7: Riesbeck. 1981: Schank. 1982: Schank &- Leake.
1989: Sussman. 1975: VanLehn. 1991a). There are several kinds of failures
that may be involved, for example expectation failures. retrieval failures, or
knowledge application failures. Expectation failures arise when the achieved
outcome conflicts with expectations. regardless of whether the outcome was
desirable (e.g., Collins & Birnbaum, 1988: Freed & Collins, 1993: Hammond.
1989; Leake, 1992: Owens, 1991: Ram & Cox, 1994/chapter 7; Schank, 1986). In
our framework, an unexpected success is also treated as an expectation "'failure."
An example of a retrieval failure is the failure of a schema-based understanding
program to retrieve an applicable schema, even though that schema exists in
memory (Ram, 1993).

Knowledge application failures arise when retrieved knowledge structures fail
to apply fully to new situations, and trigger learning to reconcile the conflicts
(e.g.. Kass & Leake, 1988: Leake, 1992: Mooney & Ourston. 1993: Park &
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Wilkins, 1990; Ram, 1993; Schank & Leake 1989). Ram. Cox. and Narayanan
(chapter 18) present a taxonomy of possible types of failures and discuss their
relationship to goal-driven learning.

Even if no failure has yet occurred, anticipation of a reasoning failure may
trigger learning. For example, a reasoner may realize that it cannot perform a
task and decide to perform the necessary learning before even attempting the
task. In our framework, all these motivations for learning-reasoning failures.
difficulties, impasses, suboptimalities, surprises, and other types of processing
problems or anticipated processing problems-will be collectively and simply
referred to as failures.

Different kinds of failures give rise to different kinds of learning goals. For
example, a reasoner may need to acquire additional knowledge if its reasoning
reached an impasse due to missing knowledge. as in the case of a novice stereo
buyer who has no knowledge of which brand of stereo to buy. If the reasoner
possessed sufficient knowledge but did not retrieve it at an appropriate time.
it may need to reorganize memory (Ram &'Cox. 1994/chapter 7: Ram. Cox.
&- Narayanan/chapter 18). A reasoner may need to modify the underlying
representational vocabulary if its vocabulary is found to be inadequate (e.g..
Schlimmer. 1987: Wrobel. 1988), In some situations, a reasoner might also need
to add to its repertoire of reasoning strategies (e.g., Leake. 1993).

When a reasoning failure is detected, the reasoning trace is analyzed. in a
process called credit/blame assignment. to find the source of the failure (Birn-
baum. Collins. Freed & Krulwich. 1990: Hammond. 1989: Minsky. 1963: Ram &
Cox, 1994/chapter 7: Weintraub. 1991). Blame assignment may be thought of
as a process of model-based diagnosis of the reasoner itself (Birnbaum. Collins.
Freed & Krulwich, 1990: Stroulia. Shankar. Goel. & Penberthy. 1992). If the
failure is attributed to faulty knowledge, learning is needed to improve the rea-
soner's performance. and a learning goal is generated to repair that knowledge.
In our framework, the learning goal is characterized in terms of two pieces of
information: The desired learning-what learning is needed-and a description
of the task that motivates learning-why learning is needed. The additional
information about why learning is needed is important to allow the reasoner
to carry out its tasks in an opportunistic manner, with learning goals (and the
tasks that they support) being suspended until circumstances are favorable to
their pursuit (Ram, 1989. 1991. 1993: Ram & Hunter, 1992/chapter 4).

Step 2: Pursuing learning goals: In the goal-driven view of learning, learn-
ing goals are treated analogously to task goals in the world. Just as task goals
are achieved through a planning process using available methods for reasoning
and action, learning goals are achieved through a knowledge planning process
using available learning met hods or strategies (Hunter, 1990/chapter 2: Quilici.
in press: Ram & Hunter. 1992/chapter 4: Redmond, 1992). In the knowledge
planning process, explicit reasoning is done about learning goals, their relative
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priorities, and strategies by which they can be achieved. These learning goals.
also called knowledge goals (Ram, 1987, 1990: Ram & Hunter, 1992/chapter 4).
can be represented in a goal dependency network (Michalski, 1993: Michalski
& Ram/chapter 21), which is used to select and combine learning actions into
learning strategies that are appropriate for current learning goals and for the
learning opportunities provided by the current environment.

Individual learning actions may include performing knowledge acquisition
(e.g., asking a friend to recommend a stereo) knowledge reorganization (e.g..
grouping stores by the size of their stereo departments), knowledge reformula-
tion or transmutation (e.g., forming new generalizations from stored episodes
concerning others' experiences with particular sound equipment), and so on.
Their application is guided by the learning goals of the reasoner (Gratch. De-
Jong. & Chien, 1994: Hunter. 1990/chapter 2; Michalski & Ram/chapter 21:
Pryor & Collins, 1992/chapter 10: Ram & Cox, 1994/chapter 7: Ram & Hunter.
1992/chapter 4). Figure 2 sketches the second step of the goal-driven learning
process. This step begins with reasoning about the relationships and relative
priorities of learning goals in order to form a goal dependency network. Based on
the information contained in the goal dependency network and on environmen-
tal factors affecting the appropriateness of different goals. the reasoner selects
the learning goals to pursue. Learning strategies for achieving those goals in
the current environment are then selected and applied.

Perspective on the framework: The model of learning embodied in the
above steps contrasts with the approach to learning taken in traditional ma-
chine learning systems in artificial intelligence. Typically. in those systems.
learning is primarily a passive, data-driven process of applying a single learn-
ing algorithm (or a predetermined combination of a few learning algorithms) to
training examples presented to the system. Goal-driven learning, in contrast.
is an active and strategic process driven by reasoning about information needs.
alternative learning strategies. and opportunities in the environment. In our
framework, the process of determining what to learn is an integral part of the
computational model of learning, as is the process of deciding (on a dynamic
basis) how and when to learn it.

Our view of goal-driven learning implies a tightly coupled relationship be-
tween learning and the -'rest of reasoning." This view is consistent with re-
cent models of intelligence that are framed as integrated intelligent architectures
(sometimes known as embtdded systems). in which the knowledge and reason-
ing tasks underlying learning and performance are integrated into a complete
interacting system. Numerous approaches to such architectures were presented.
for example, at the 1991 AAAI Spring Symposium on Integrated Intelligent Ar-
chitectures (Laird, 1991), the 22nd Carnegie-Mellon Symposium on Cognition
(VanLehn. 1991b) and at the Integrated Learning Workshop at the 1993 Euro-
pean Conference on Machine Learning (see Plaza. Aamodt, Ram, van de Velde.
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Figure 2: Pursuing learning goals using appropriate learning strategies

& van Someren. 1993. for an overview). Some of these architectures propose
that one or a few primitive mechanisms underly intelligence (e.g.. Soar (Rosen-
bloom, Laird. & Newell. 1993). ACT* (Andersen, 1983)). while others integrate
many (often higher-level) mechanisms that cooperate to achieve the agent's
task and reasoning goals (e.g.. PRODIGY (Carbonell. Etzioni. Gil. Joseph.
Knoblock. Minton. &- Veloso. 1991/chapter 11) and Theo (Mitchell. Allen. Cha-
lasani. Cheng, Etzioni. Ringuette & Schlimmer. 1991)). A common theme in
this research, and one that is compatible with the goal-driven learning frame-
work proposed here, is the explicit representation of task goals, reasoning goals.
and learning goals, and their role in a multistrategy reasoning process that inte-
grates learning with perforimance tasks such as problem solving or comprehen-
sion (e.g., see Ram, Cox, k" Narayanan/chapter 18). This theme is also shared
with recent approaches that focus more on knowledge and knowledge-intensive
reasoning than on the unilerlying cognitive architectures, such as Aamodt's
(1991) CREEK and Hinrich and Kolodner's JULIA (Hinrichs, 1992).

5 Major issues in goal-driven learning

Our framework suggests e,,eral issues that must be addressed by a general
theory of goal-driven learinng:
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" What is a goal?

The term "goal" has been used to refer to several theoretical constructs
in previous theories of learning and reasoning, including tasks, problem
solving outcomes, desired states of the world, target concepts for learning.
policies and orientations for learning, and so on. Consequently, character-
izing goal-driven learning depends on determining the meaning of "goals"
as they apply to the learning process.

" What are the types of goals?

Given the wide range of goals and other influences described in learning
research, another central issue is to identify different types of goals. how
they relate to one another. and how different formulations of goal-based
influences on learning can be placed in a unified framework.

" How do goals influence processing and learning?

A premise of the goal-driven learning framework is that reasoning about
goals directs the learning process. A fundamental question is what effects
goals actually have on the learning process and how their influence is
achieved.

" What are the functional and pragmatic implications of goal-
driven learning for the reasoner?

Given the differences between goal-driven learning and traditional learn-
ing models, one key question concerns the effects of goal-driven learning:
What are the functional implications of goal-driven learning for the rea-
soner's own performance? What are the pragmatic implications of goal-
driven learning as a model of reasoning. and for the design of intelligent
systems?

" What are the pragmatic implications of goal-driven learning as
a cognitive model?

Considering goal-driven learning as a cognitive model raises questions
about the pragmatic implications of that model. One key question con-
cerns the predictions that the model suggests. which have implications for
testing and validating theories of goal-driven learning. Another concerns
the implications of t he model for practical applications such as the design
of instructional material and educational environments.

The following sections start with the first three of these points, illustrating
relevant distinctions using examples from artificial intelligence research, and
then take a broader view in considering the pragmatic ramifications of the goal-
driven learning model. In l.eake and Ram (1993/chapter 16). we return to
these issues, discussing the inudividual perspectives on them that were advanced
by the panelists at the S.uiposiuin on Goal-Driven Learning held at the 1992
Conference of the Cognitive Science Society.
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6 What is a goal?

As Barsalou (chapter 17) observes, in some sense any reasoner executing a
built-in procedure can be viewed as having a "goal" to perform that type of
processing, so that any learner could be considered trivially "goal-driven". To
distinguish between built-in behaviors and behaviors that are more explicitly
goal-driven, Barsalou differentiates between implicit background orientations
and explicit problem solving or task goals. Explicit task goals are the goals
that guide a problem solving process in which a person intends to achieve a set
of goals, assesses what must be performed to achieve them, and executes the
needed actions. In contrast. an implicit background orientation is a behavior
that is performed without explicit reasoning about when and how it should
be pursued. For example, one such implicit orientation is the orientation to
constantly maintain a world model that adequately represents the reasoner's
environment (e.g., Barsalou/chapter 17. Leake, 1989, 1992), although in some
formalisms this is expressed in terms of an explicit goal (see. e.g.. Van de Velde.
1988).

Explicit goals are traditionally expressed as specifications of a target or de-
sired outcome of a problem solving or learning task (e.g.. Fikes. Hart. &- Nils-
son. 1972: Newell & Simon. 1972). However, Ram and Hunter (1992/chapter 4:
Hunter. 1990/chapter 2: Ram k- Cox. 1994/chapter 7) argue that capturing the
introspective nature of the goal-driven learning process requires a richer charac-
terization in which a goal is not merely a specification of a target. They argue
that a target specification or an orientation is a goal only if the reasoner can
actively plan to accomplish the goal, can make decisions about it. and can even
decide to suspend it or not to pursue it.

In order for the reasoner to make such decisions, goals must be explicitly
represented. and the reasoner must be able to reflect on its goals. how to
achieve them, and their relative priorities and interdependencies. Ram and
Hunter (1992/chapter 4) discuss a representation of learning goals in terms of
the desired knowledge to be learned as well as the reason that the knowledge is
needed. Additional representational issues concern the kinds of decision-making
relationships that goals can enter into (Thagard &- Millgram/chapter 19) and
the intergoal relationships and interdependencies in which goals can play a role
(Cox &- Ram. 1994: Michalski & Ram/chapter 21: Schank and Abelson. 1977,
Slade. 1993; Wilensky M49t3).

7 Types of goals

In order to understand how goals can relate to one another and to learning.
it is useful to consider the cla.,ses of goals that influence learning processes in
existing computational models of learning (implemented as computer systems
that learn). This section examines those classes. Our taxonomy is divided into
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the classes centered around task goals, learning goals. and specificatzons, policies.
and constraints. Broadly, task goals determine why the reasoner is learning in
the first place, learning goals specify what the reasoner needs to learn, and
specification, policies and constraints influence how learning occurs.'

7.1 Task goals

In many systems, goals are modelled as descriptions of desired results or states
in an external world, which we call "task goals." Task goals, exemplified by early
planning programs such as STRIPS (Fikes, Hart, & Nilsson. 1972) and NOAH
(Sacerdoti, 1977), are specifications of desired outcomes from a performance task
in the external world, which are explicitly pursued through planful reasoning
processes or, in some recent models, goal-directed reactive processes (e.g.. Earl
& Firby, 1994; Firby, 1987: Freed & Collins. 1994: Maes. 1990).

In order to pursue its task goals. a system may need to reason about the
task goals and reasoning goals of other agents. In order to understand a story
(or a real-world situation) involving other intelligent agents, a computer under-
standing system needs to model the goals and plans of those agents (Schank
& Abelson. 1977: Wilensky. 1978): in addition, consideration of such goals af-
fects the comprehension process of humans (Abbott & Black. 1986). Reasoning
about other actors' goals also plays an important role in Al models of subjective
understanding (Carbonell. 1983: Ram. 1990). Representation of goals and goal
interactions is central in understanding as well as in planning (Wilensky. 1983).
Such representations must capture both task goals and reasoning goals of both
other agents and the system itself.

Because task goals characterize a desired state of affairs. they can also be
used to describe the need for information that a planner requires to achieve
that state of affairs (e.g.. Etzioni. Hanks. Weld. Draper. Lesh. & Williamson.
1992: Leake. 1991b/chapter 9: Ram k- Leake. 1991). to understand interactions
between task goals (e.g.. Freed &_: Collins. 1994). and to influence or bias learning
strategies (e.g., Martin. 1991-: Provost. 1994). In some models, task goals (and
resulting learning goals) are' decomposed into subgoals or task structures to
facilitate planning and learning (e.g., Karlsson. 1994: Stroulia & Goel. 1994).
In planning systems that store prior plans, such as Hammond's (1989) CHEF.
task goals drive the search for relevant plans in memory and trigger learning of
new plans and new indi,', for plan retrieval when failures arise. A similar role is
played by "problem goal.," \'eloso and Carbonell's (1993) model of case-based
reasoning in the PRODIGY system. and by functional specifications or "'design
goals" in design programs ,e v .. I'JLIA. Hinrichs. 1992: Kolodner. 1987).

ITo clarify the differenu'.s and u'-1mmnalities in different approaches, in this discussion
we will use a common vorabIl,%r% ,mid framenwork to discuss individual pieces of research in
an attempt to present an intr'tr~t,,d irew of goal-driven learning, even at the expense of
sometimes differing from the t.rnr,,Lv used by the original researchers.
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7.2 Learning goals

Other computational models explicitly describe goals for learning, rather than
implicitly characterizing it in terms of the external task. These learning goals
differ from task goals in that, while they too specify a desired state, the spec-
ified state is an internal or mental state-a state of knowledge or belief that
the learner is attempting to achieve. Task goals are satisfied through problem
solving in the external (usually physical) world, while learning goals are satis-
fied through a learning process that, in the goal-driven learning framework. is
viewed as problem solving in the "informational" world. These learning goals
have been characterized in the following ways:

Knowledge acquisition goals or knowledge goals: Schank and Abel-
son (1977) describe a category of knowledge goals (called "D-KNOW"
goals) to determine needed information. In their model, such goals arise
when a planner requires knowledge of particular facts (e.g.. the location of
a desired object) to achieve its other goals. The planner generates plans
for satisfying these goals using standard methods for seeking information
in the external world.

The term "knowledge goal" was introduced by Ram (1987). and general
knowledge goals are discussed in more detail in Ram & Hunter (1992/chap-
ter 4). Ram (1990) proposes the use of knowledge goals as the basis for
focus of attention in understanding and learning. Hunter's (1990/chap-
ter 2) IVY and INVESTIGATOR programs identify and pursue "knowl-
edge acquisition goals" whose satisfaction constitutes learning in those sys-
tems. Ram and Cox's (1994/chapter 7) Meta-AQUA system uses knowl-
edge goals such as knowledge refinement goals. knowledge reconciliation
goals, and knowledge differentiation goals. to specify desired learning in
a multistrategy learning system. The system then reasons about and se-
lects the learning algorithms most appropriate for achieving its knowledge
goals (Cox & Ram. 1994). Knowledge acquisition goals in desJardins's
PAGODA system (called "-learning goals" in that system) represent con-
cepts which, if learned, would maximize the system's expected utility (Des-
Jardins. 1992/chapter 8).

e Questions: Ram's (1991. 1993) AQUA asks "questions" which are then
represented as "knowledge goals." As in IVY, AQUA's learning occurs
through satisfying knowledge goals. but using different methods: IVY
looks for desired information in diagnostic cases, and AQUA tries to an-
swer its questions by reading stories (Ram & Hunter, 1992/chapter 4).
In Oehlmann, Sleeman. and Edwards' IULIAN (1992). questions and ex-
perimentation interact in an exploratory discovery process applied to the
domain of electrical circuits.
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e Learning goals: Michalski's (1993) MTL framework uses "learning
goals" as the starting point for learning; relationships between "learn-
ing goals" are then used to combine basic knowledge transmutations into
learning actions and to prioritize learning activities. Such learning goals
subsume knowledge acquisition goals. knowledge organization goals to re-
organize existing knowledge, as in AQUA, Meta-AQUA. and IVY. and
knowledge reformulation goals as in Meta-AQUA and MTL.

In our further discussion we will consider that learning goals, in addition
to specifying the desired outcome of learning, specify the reason that the de-
sired learning is required (for example. AQUA's "task specifications" specify
the suspended reasoning task that is awaiting the knowledge to be learned).

7.3 Specifications, policies, and constraints

Numerous computer systems reflect other types of influences and constraints on
learning that are goal-related. Although these are not properly "-goals" in our
sense, because they do not drive thle larning process in an explicit manner. the\
may play an important role in inlluencing that process. One such influence is:

Goal concepts or target concepts: Mitchell. Keller. and Kedar-
Cabelli's (1986) EB(; algorithm, implemented in several computer pro-
grams. takes as input a "target concept" or a "'goal concept." in or-
der to learn an operational description of that concept (see also Minton.
1990/chapter 3).

"Target concepts" are similar to "learning goals" in that they specify the
desired outcome of learning. However. in accordance with our earlier
discussion of goals. target concepts are better viewed as specifications
of the desired output of a learning strategy rather than an explicit goal
to learn, unless they are pursued through active. strategic, or planful
reasoning processes In addition, target concepts (unlike learning goalsi
do not specify the ntvation for learning.

The following categori.", are all ways to characterize the value of learning for
the learner. In particular. th,.vy describe the policies under which the learning
task should operate in orle.r to better achieve the overarching learning goals.
and describe relevant ,',,tv.iratuts on the processes that carry out the learning
task:

* Purposes: Kedar-('al,,lli's (1987) PURFORM uses "purposes" of arti-
facts, defined in torii- 4 hir role in enabling plans. to determine tar-
get concepts for lrarimit I.,'ake"s (1991b/chapter 9. 1992) ACCEPTER
guides explanation %":fluattln in terms of tasks in the world which give
rise to "purposes" I-) hutlI particular types of explanations. which in turn
provide the informat i,,n iwe,,ded to satisfy system learning goals.
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"* Operationality criteria: In explanation-based learning systems. "op-
erationality criteria" (surveyed in Keller. 1988) characterize requirements
for useful concept descriptions.

" Preference criteria, inductive biases, and general policies and
constraints: Inductive learning systems such as PREDICTOR (Gordon
& Perlis, 1989/chapter 13), LEX (Mitchell, 1982), and STABB (Utgoff.
1986) use an "inductive bias" to restrict the space of candidate hypothe-
ses. Michalski's (1983) INDUCE method uses a lexicographic preference
criterion to rank candidate hypotheses for generalization. Laird. Rosen-
bloom, and Newell's (1986) SOAR system incorporates a "policy" to learn
from each subgoal during problem solving.

" Utility metrics: Minton's (1990/chapter 3) PRODIGY system uses a
"'utility metric" to determine whether a piece of knowledge is worth learn-
ing or storing. Gratch and DeJong's (1993) COMPOSER uses "expected
utility" to characterize the quality of a reasoner with respect to a task.
which increases with learning. desJardins's (1992/chapter 8) PAGODA
computes the utility of plans and the costs of planning and learning to
guide learning. PAGODA's *,learning goals" represent concepts which, if
learned, would maximize the system's expected utility.

Policies and constraints are not learning goals in the sense that the learner
does not actively seek to satisfy them: instead, they influence the learning pro-
cesses that the learner uses to achieve its learning goals. In particular. they
describe the policies under which the learning task should operate in order to
better achieve the overarching learning goals. and describe relevant constraints
on the processes that carry out the learning task. Note that a learner might
formulate explicit learning goals to learn these criteria. For example. a learner
might formulate an explicit goal to learn appropriate biases for a given type of
learning situation, and pursue an explicit learning agenda to learn such biases.

7.4 A unifying view

The underlying commonality among these constructs is that each reflects an in-
tention to influence learning according to needs that are external to the learning
process itself. However. quite different focuses are apparent in the formulations
described in the previous ,,,t ions. Consequently, developing a general theory of
goal-driven learning depends on analyzing the relationships of these constructs
and their role in reasoning and learning.

To relate the previous perspoctives, we will establish a uniform vocabu-
lary. In the following disru.,,ion. we will refer to the general class of goals to
describe theoretical cons!rw,'!' that refer to mental entities reflecting desired
states that are explicitly repr,.sented and actively pursued through a planful
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reasoning process.2 Task goals will refer to goals which specify desired effects in
the world external to the reasoner. Learning goals or knowledge goals will refer
to goals which specify desired effects within the reasoner such as acquiring new
knowledge or augmenting, reorganizing, or reformulating existing knowledge.
Learning goals describe not only the desired processing outcome, but how the
desired knowledge will be used when it is acquired. Reasoning goals will refer to
more general internal goals to form conclusions or inferences through learning
or other reasoning processes.

We will also refer to target concepts that specify a desired concept to be
learned, but not necessarily learned through a goal-driven learning process: and
to general policies or orientations that influence learning without being explicitly
represented or available for manipulation by the reasoner's reasoning or learning
process, including constraints on the formulation of hypotheses such as biases.
operationality criteria, and utility metrics. Our vocabulary makes the following
distinctions:

" Task goals vs. reasoning goals: Task goals are goals to be achieved in
the world external to the reasoning system: reasoning goals are achieved
within the reasoning mechanism of the system.

" Reasoning goals vs. learning goals/knowledge goals: Reasoning
goals span the broad range of deliberative activities, including activities
such as retrieval of relevant information. similarity assessment. etc. Learn-
ing goals/knowledge goals refer solely to goals to acquire or formulate
particular types of knowledge.

" Goals vs. policies/orientations/constraints: Goals involve specifi-
cations of internal or external states to be actively planned for: policies
specify background orientations that are implicit in the processes that
achieve these states.

" Learning goals vs. target concepts: Learning goals are manipulated
by an explicit. strategic planning process, while target concepts are spec-
ifications of desired results from a learning algorithm that uses the spec-
ification only to evaluate its results, rather than to guide the on-going
learning process.

Table 3 summarizes these distinctions. Note, however, that these classes of
goals can overlap and influence each other. Task goals have been used to guide
learning and performance in several systems, and can also be used to formulate
learning goals to acquire information necessary for a given task (Ram &- Leake.
1991) or to come to a better understanding of the task itself (Freed & Collins,

2
Note that this definition d-e% uwit imply that goals or goal-driven processing must neces-

sarily be conscious, nor that the rea.aoner must necessarily be able to report externally about
this processing.
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Explicitly Range of effects Influences Solution Effect on
represented? (internal to selection of process solution

reasoner or in solution generation
external world) algorithm?

Goals Yes Either Yes Planning Guidance
Task goals Yes External Yes Planning actions Guidance

in external world
Reasoning goals/ Yes Internal Yes Knowledge planning Guidance

learning goals
Policies Sometimes Internal Sometimes Unspecified Constraint
Target concepts Yes Internal No Unspecified Guidance
Operationality Yes Internal No Unspecified Constraint

criteria

Table 3: Types of goals and policies.

1994). In conjunction with knowledge or theories, they can guide learning pro-
cesses (Barsalou. 1991/chapter 5; Ng &,- Bereiter. 1991/chapter 14: Wisniewski
&: Medin. 1991/chapter 6). Likewise. although target concepts are generally
provided to a learning system as input by a human user, in some models target
concepts are generated from aspects of the performance task in a manner similar
to the generation of learning goals. For example. Kedar-Cabelli (1987) discusses
a method for generating target concepts from standard constraints on artifacts
to be used in particular plans. Keller (1987) also sketches a process for generat-
ing learning goals from higher-level performance objectives. Similarly. policies
(such as bias. which is usually formulated as a passive, background constraint
on learning) may be actively monitored and modified by the reasoner to guide
the learning task (Gordon ', Perlis. 1989/chapter 13: Martin. 1994: Provost.
1994: Provost &- Buchanan. 1992: Utgoff. 1986).

Several models include learning goals as an explicit part of their formulation
of the learning process. l.,arning goals have been used to guide resource alloca-
tion. information search. liy pothesis evaluation, and other aspects of learning: to
select and combine learning strategies: to guide and to learn about the reason-
ing process itself: and to model active learning in educational contexts. These
models are discussed in th,. following sections.

8 Role of goals in learning

Given the range of goal, ihat ,':n influence learning, it is not surprising that
different models reflect diff.r.ni i'ypes and degrees of goal-based influence. Tha-
gard and Millgram (chapter 19) propose a broad distinction between learning
which is explicitly goal.dr,# n and that which is goal-relevant. Goal-relevant
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processing is not explicitly directed by the goals of the reasoner, but results in
outcomes that are nevertheless useful with respect to those goals. Thus goal-
relevant processing is similar to Barsalou's (chapter 17) orientations in which
the desired learning may occur as a side-effect of normal task-related process-
ing. For example, a reasoner may have an implicit orientation to maintain an
accurate model of the world around it (Barsalou. chapter 17: Leake, 1992).
Goal-driven learning, in contrast, is driven by explicit learning goals of the rea-
soner: those goals influence or even determine the content of what is learned.
As the reasoner's goals change, so does the learning that results.

One of the issues involved in goal-driven learning is how to balance compet-
ing goals to determine the goals and goal priorities that form the background
for the goal-driven learning process (Thagard & Millgram, chapter 19). Once
learning goals have been identified and prioritized, they can influence the svs-
tem performance task, the system learning task, and the storage of results. The
ways that goals can exert their influences are summarized in table 1. and are
discussed in more detail in the following sections.

8.1 Guiding the performance task

In any goal-driven system, the influence of goals on the performance task also
influences what is learned, by determining the focus of processing or changing
the context in which learning is performed (Barsalou. chapter 17). For example.
in case-based reasoning systems. the goals that drive processing also influence
what is eventually learned (e.g.. Kolodner. 1993: Hammond. 1989: Hinrichs.
1992: Ram. 1993: Veloso & Carbonell. 1993).

In addition. just as performance tasks can give rise to learning goals (e.g..
the stereo buyer's learning goals). learning goals can themselves prompt and
guide new performance tasks in service of the learning goals. For example.
learning goals may guide tasks to gather needed information in the world, or
to produce a situation in the world that is favorable to learning. Performance
tasks may include reasoning tasks that are largely internal to the reasoner. For
example. Leake (chapter 20) presents a model of explanation construction that
is an integral part of a goal-driven reasoning and learning system. The reasoner
can decide when explanations are needed, can characterize its information needs
(goals), and can use this characterization to focus the search for explanations.
Thus goals are used to guide the control procedure used in the performance
task (explanation construction) and to manage the resources available for that
task. Since explanation is a central part of learning, a goal-driven explainer
is necessarily a goal-driven learner as well. Many performance tasks involve
interaction with the outside world. For example, Ram (1991; Ram & Hunter.
1992/chapter 4) presents a model of natural language story understanding in
which goal-driven processes are used to analyze and interpret natural language
text (see also Carpenter & Alterman, 1994). Similarly, in Pryor and Collins's
(1992/chapter 10) model. goals are used to guide the perception of visual images.

23



Xia and Yeung (1988/chapter 12) use goal-based considerations to learn new
classifications of problem-solving strategies, and Hunter (1990/chapter 2) uses
knowledge goals to guide the search for information by. for example, formulating
appropriate queries to a database.

8.2 Guiding the learning task

The central tenet of goal-driven learning, and the thesis of this book. is that
the learning is guided by explicit consideration of the reasoner's goals. The
goal-driven learning framework involves first formulating explicit goals to find or
infer certain beliefs, and then using these goals to drive reasoning and learning-

'which amounts to explicit decision-making and control. The resulting control
of learning can be realized in several ways as described below.

8.2.1 Specifying the target of learning

Barsalou (1991/chapter 5) shows that people often derive categories in a dv-
namic. ad hoc manner during the c'onstruction of plans to achieve goals. For
example. while foods are normally categorized into grains, vegetables. fruit:.
and so on. different category structures may be appropriate in the context of
particular goals. giving rise to categories such as "foods to eat while on a diet".
Some of these goal-derived categories become reasonably well-established for
people or cultures in which the goal occurs often (such as dieting). but others
remain ad hoc (such as "activities to do on a vacation in Japan with one's grand-
mother" ). Thus learning can involve the construction of concepts that must be
determined in a dynamic manner based on the demands of the particular task
at hand. This is consistent with Ng and Bereiter's (1991/chapter 14) results on
task- and goal-driven learning in an educational setting.

Wisniewski and Medin I'. 1991/chapter 6) show that prior knowledge and in-
tuitive theories can also influence learning (see also Murphy k- Medin. 198',
They argue that tightly 'oupled interactions exist between knowledge and ex-
perience during learning 1,, the extent that learning is incremental, candidate
hypotheses and theories Iarmid earlier can influence later learning. In addition
to previously learned t r, . a goal-driven learner will also have previously for-
mulated and possibly onl, partially satisfied learning goals as part of its learning
context: these goals can a3,, influence future learning (e.g.. Ram, 1991. 1993).

In early artificial ili tlli.,,'ii'e models of learning, goals were pre-specified as
targets of particular learntin algorithms. Such models did not have explicit
learning goals: rather. ih,.e 'l ,,Id hoe viewed as possessing background orienta-
tions to ensure that the 1.'arninv ac'tlons are goal-relevant. However. task goals
can be used to determins' ,.:,r1,,, gak, which specify the desired outcome of the
learning task. whether it I-. ,i ,w piece of knowledge to be acquired or a new
organization or formulat in 4 .'xisiing knowledge (Ram &k Leake. 1991). For
example. Kedar-Cabelli i7 anmd Keller (1987) propose extensions to earlier

24



models in which the reasoner proposes its own targets rather than relying on an
outside user to specify them.

In general, multiple learning goals are possible in any complex situation.
and complex reasoning processes may be needed to determine which learning
goals to generate (Krulwich, 1994; Ram, Cox, & Narayanan/chapter 18). It
has been proposed that if learning is integrated with the reasoning process
that it is in support of, an analysis of the reasoning process can be used to
formulate learning goals (Hunter, 1990/chapter 2; Leake/chapter 20; Ram &
Cox, 1994/chapter 7: Ram, Cox. & Narayanan/chapter 18; Ram & Hunter.
1992/chapter 4). For example. if a reasoner is unable to perform its task due
to a missing piece of knowledge, it can formulate an explicit goal to learn that
piece of knowledge. Learning goals may also seek to augment knowledge in
other ways (e.g.. learning a new antecedent to a rule (Mooney & Ourston. 1993:
Park & Wilkins, 1990)), reorganize knowledge (e.g., learn a new index to an
existing knowledge structure (Hammond, 1989: Ram, 1993)) or to reformulate
existing knowledge (e.g.. operationalization of abstract knowledge into a more
directly usable form (Keller. 1988: Mostow. 1983): generalization or abstrac-
tion of examples (Michalski. 199.3): modification of representational framework
or vocabulary (Schlimmer. 1987: Wrobel. 1988)). Michalski (1993: Michalski
& Ram/chapter 21) presents a taxonomy of the kinds of -knowledge trans-
mutations" that may be used for various kinds of learning. As those learning
goals are pursued. new learning goals may be generated on the fly. or existing
learning goals abandoned, in response to changes in circumstances. the learner's
knowledge, and overarching goals of the learner (Leake/chapter 20). Due to the
dynamic nature of learning goals. the learning process itself must be dynamic
as well.

8.2.2 Specifying the learning algorithms used

Many recent models of learning in humans and machines appeal to multiple
methods for learning and reasoning in general (e.g.. Michalski & Tecuci. 1993).
For example. Ram, Narayanan. and Cox (1993) present a computational model
of troubleshooting. based on a study of human troubleshooters on an electron-
ics assembly line. In that model. several different learning strategies are used
to improve troubleshoot ing performance. including compilation of knowledge
through experience with slwcific problems. interactive acquisition of knowledge
from a human expert. postponement of a problem until a later time, and for-
getting knowledge that is made obsolete through changes in the manufacturing
process.

In a wide range of artificial intelligence systems, goals determine the learn-
ing algorithms used to accomplish needed learning (e.g., Hunter, 1990/chap-
ter 2: Michalski & Ram/,'hapter 21: Ram & Cox. 1994/chapter 7; Ram. Cox,
& Narayanan. chapter lI. liain & Hunter. 1992/chapter 4: Redmond. 1992:
Quilici, in press: Xia & Yeting. 1988/chapter 12). A central issue in such mod-
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els is how to select and combine appropriate learning algorithms in a given
learning situation. This multistrategy learning process can be modeled with an
explicit decision stage in which the appropriate learning strategy or strategies
are identified (as shown in figure 2), followed by a strategy application stage in
which the corresponding algorithm is executed (Ram & Cox, 1994/chapter 7).
In addition, some models incorporate an explicit evaluatory phase in which the
quality of a learned piece of knowledge is assessed. In those models. learning
goals can be used to guide evaluation, such as in Leake's (1991b/chapter 9.
chapter 20) use of goals to evaluate causal explanations.

8.2.3 Constraining the learning process

In some models of goal-driven learning, goals are used not to specify the de-
sired target of learning or to select learning strategies. but rather to provide
constraints to the process used for learning itself. For example. a reasoner that
learns through inductive generalization must select from among a potentially
very large number of possible hypotheses consistent with its inputs, and select-
ing the right candidate hypotheses can have an enormous effect on the ability of
the reasoner to perform a particular task. Because the inputs do not adequately
constrain the set of candidate hypotheses. hypothesis selection must be done via
some criterion external to the inputs themselves. Such a criterion is called a
"bias" (Mitchell. 1980) or "'preference criterion" (Michalski. 1983). Although
many early models of inductive learning appealed to a pre-determined bias. it
is often advantageous for the learner to modify its bias (Utgoff. 1986). Gor-
don and Perlis (1989/chapter 13) discuss a computational model of inductive
learning in which the formation of useful generalizations is facilitated by use of
explicit biases: Provost and Buchanan (1992) discuss the use of "inductive poli-
cies" to automatically adjust the bias in a learning system based on explicitly
represented tradeoffs: and Hadzikadic and Yun (1988) argue that concept for-
mation should be viewed as a goal-driven, context-dependent process to assure
its flexibility, efficiency. and generality.

Similarly, some computational models of analogical learning include a mech-
anism by which the reasoner's task goals can influence the analogical mapping
process (e.g.. Forbus & Oblinger, 1990: Kedar-Cabelli, 1987). As with other
types of learning mechanisms, the functional justification for this influence is
to ensure that the inferences made during learning are actually relevant to the
overall performance task of the reasoner. Spellman and Holyoak (1993) present
evidence for the influence of goals on analogical mapping in human learners as
well.

8.2.4 Focusing search for information to carry out learning

Carrying out the desired learning may require acquisition of new information.
Consequently, learning goals may give rise to processes that attempt to seek
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that information from the outside world. Some of the possible methods include
reading text (Ram, 1991), querying a database (Hunter, 1990/chapter 2). ac-
tive experimentation (Carbonell & Gil. 1990: Cohen. Kulikowski. & Berman,
1993; Rajamoney. 1993), or other planful activity to gather needed information
(Etzioni. Hanks, Weld, Draper. Lesh, & Williamson. 1992; Leake/chapter 20:
Pryor & Collins, chapter 10).

8.2.5 Determining when learning should be attempted

Having identified what to learn and how to learn it, a reasoner. in general, still
needs to determine when (or whether) to perform the actions that will lead to
the desired learning. This decision can be broken down into two fundamental
aspects: identifying learning opportunities. and evaluating the potential utility
of learning.

Identifying learning opportunities: It would be naive to expect the real
world to be structured so as to facilitate the satisfaction of each individual's
needs whenever they should arise. Instead. it is likely that goals (Whether task
goals or learning goals) will not he immediately satisfiable at the time when they
are formulated. For example. a detective with the goal of identifying a criminal
will usually need to do much investigation before having sufficient information
to assign responsibility (Leake/'hapter 20). Likewise. the reasoner may not
have the resources to pursue all its goals all the time, forcing the reasoner to
select particular goals to pursue (a detective performing multiple investigations
will prioritize them according to their importance).

Furthermore. the real world environment may not provide the opportunity
to pursue a particular goal even if the reasoner does decide to pursue it. For
example. pursuit of a learning goal may require environmental resources (such as
a library, or access to an expert) which may simply not be available at the time.
In Ram's (1991) model of natural language story understanding. for example.
the reasoner's questions about the story being read may not be answerable due
to insufficient information being available in the story. Determining whether
a suicide bombing is the ,nwork of a religious fanatic depends on having more
information about the bmmmblr than is likely to be available in the first accounts
of the incident. Thus it i., essential for the reasoner to be able to suspend
its pursuit of a goal. an(d n, be able to resume its learning processes when an
opportunity to satisfy tht goal presents itself (Ram & Hunter, 1992/chapter 4).
An analogous argument ha., been made for the opportunistic pursuit of task
or problem solving goal.- (irnbaum k- Collins. 1984: Hayes-Roth & Haves-
Roth. 1979: Hammond. ('n•0'r•,'. Marks. & Seifert. 1993: Patalano. Seifert. &
Hammond. 1993), and smdul:r factors are relevant to learning behavior as well.

Evaluating the potential utility of learning: Not all learning is useful:
learning may sometimes be unidesirable if it leads to the accumulation of knowl-
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edge that is seldom used, that is not expressed in an efficient manner, or that im-
pairs performance of the reasoner (Etzioni. 1992: Francis & Ram, 1993: Gratch
& DeJong. 1993: Minton. 1990/chapter 3: Tambe, Newell, & Rosenbloom. 1990).
Estimates of the potential utility of learned knowledge can be used to decide
what to learn about, based on an analysis of the expected utility of the learning
goals if they were to be achieved (e.g., desJardins. 1992/chapter 8). As men-
tioned earlier, while human learners may not be able to explicitly control their
own reasoning processes to such a fine-grained level of detail, it is nevertheless
possible to model human learning behavior in a goal-driven, utility-theoretic, or
rational formalism (e.g.. Anderson, 1991).

8.2.6 Evaluating the results of learning

The final criterion for the effectiveness of learning is how well the results of
learning match the desired effects of the learning process. This question has
received less attention than the questions of how goals influence initial learning.
However, such evaluation has been used to determine whether to store the resultS
of the learning algorithm (Minton. 1988: 1990/chapter 3). and could be used to
formulate new learning goals in light of current results of the learning process.

8.3 Guiding storage

Evaluating the results of learning can a system to decide whether to store them.
and. if it does. to decide how to store them. Minton (1988: 1990/chapter 3)
proposes a learning process that estimates the usefulness of the generalized rules
that it forms before they are actually stored in the rule library. The estimate
is used to predict the utility of storing a new rule: only those rules expected
to actually improve performance are stored. Once a rule has been stored, the
effects of that rule on performance are monitored: rules that do not improve
performance are removed from the rule library.

This kind of selective storage and retention of learned rules is an instance
of a more general kind of goal-directed control of learning called information
filtering (Markovitch & Scott, 1993). Information filters can be used to decide
which learned items to store, which to retain in memory over time. which to
apply in a given situation. and even which training experiences it should seek
out and which it should learn from. The reasoner's task goals guide the filters in
selecting what learning occurs and what products of learning are retained and
used.

Despite the practical benefits of using goals to guide storage. claims of cog-
nitive validity for such a model are controversial (see Barsalou/chapter 17 for
arguments against direct goal-based guidance in human learners). However,
regardless of whether explicit reasoning about goals affects individual storage
decisions, goals can still have a profound effect on what results are stored by de-
termining the course of processing. If goals determine processing and if process-
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ing determines storage, then goals determine storage indirectly. For example, in
dynamic memory systems. processing intrinsically changes memory without the
changes to memory necessarily being under explicit strategic control (Schank.
1982).

Goals also play a more direct role in storage in many Al systems. For ex-
ample. case-based planning systems index learned plans according to the goals
that those plans satisfy (e.g., Hammond. 1989: Hinrichs. 1992; Kolodner. 1987:
Veloso & Carbonell, 1993). In this way, these systems organize their memories to
facilitate re-use of those plans to accomplish similar goals. Likewise, case-based
explanation systems index explanations according to the knowledge goals that
the explanations were formulated to satisfy (e.g.. Leake. 1991a. 1992; Ram. 1993:
Schank & Leake. 1989). Thus. these systems attempt to store learned informa-
tion to facilitate accomplishing similar future goals. Psychological experiments
by Patalano. Seifert and Hammond (1993) also suggest that, in humans. goal-
based factors can affect storage so as to facilitate noticing information relevant
to the pursuit of those goals.

The preceding sections show that goal-driven learning provides flexibility for
processing and the ability to tailnr learning to current learner needs. helping to
perform effective learning of useful information. Insofar as learning is simply a
kind of reasoning (Ram. Cox. K: Narayanan. chapter 18). many of the mecha-
nisms of attention focussing and goal-driven processing in learning and in other
reasoning will be identical. In particular. many of the results from research in
planning may. mutatis mutandis. carry over to goal-driven learning as well,

9 Pragmatic implications of goal-driven learn-
ing

The previous discussion ,liows how goal-driven learning can provide considerable
power in intelligent systvwt,. whet her those systems are viewed as computational
models of human intellig,.n,'. or purely as artificial intelligence systems. In
learning systems. goals cai 1w used to focus learning and to avoid unrestricted
search and inferencing. lih,. ',an also be used to guide the information-seeking
process and to make dcii•. -it about what. when. and how to learn.

Applying a planful mti.-I of learning promises to be fruitful for many. appli-
cations, including percept t,,n Wryor &,- Collins. 1992 10). intelligent information
retrieval (Ram &- Hunt,,r. P0I'l ). learning through apprenticeship (Redmond.
1992). knowledge acquIiit in Qiiuilii. in press). information search during ex-
planation (Leake. chaptr 2111 me.d,,al diagnosis (Hunter. 1990). natural lan-
guage understanding (('arp.wtr ' Alterman. 1994: Cox & Ram, 1994: Ram.
1991). and manufacturin, 1,r,. 1994: Ram, Narayanan. & Cox. 1993).

In addition, goals can k. i.,,d as a theoretical device to build computational
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models of strategic and active reasoning and learning processes, and such mod-
els have practical ramifications for the design of instructional material. Ng and
Bereiter (1991/chapter 14) show that different kinds of goals facilitate different
kinds of reasoning and result in different kinds of learning. Such results suggest
principles for the design of computer-based tools for education (Scardamalia &:
Bereiter, 1991). For example, van Berkum, Hijne, de Jong, van Joolingen, and
Njoo (1991/chapter 15) use goal-driven learning both as a theoretical frame-
work for decomposing the education problem and as a guide toward design-
ing simulation-based instructional software. Schank proposes that because of
the importance of goals in motivating and guiding learning, instruction should
be conducted using a particular type of simulation environment-a goal-based
scenario--to exploit the role of learning goals (Schank. Fano. Jona. & Bell.
1993/1994). In goal-based scenarios, students play roles that are connected to
their goals. and whose successful completion requires acquisition of the skills to
be taught. In that way. goal-based scenarios provide a framework for students
to perform goal-driven learning to acquire the skills to be taught.

To design educational environments that facilitate learning, one must under-
stand the goal-driven information-seeking processes of the students who will be
interacting with the environment, in order to encourage development of those
processes. For example. in Scardamalia and Bereiter's (1991) Teacher C model.
the teacher is concerned with helping students formulate their own goals. do
their own activation of prior knowledge. ask their own questions, direct their
own inquiry, and do their own monitoring of comprehension. Ng and Bere-
iter (1991/chapter 14) identify three types of goal orientation in learning: task
completion. instructional, and knowledge-building. They show that students
with knowledge-building goal orientation learn better-those students actively
construct learning agendas. use prior knowledge in learning, and use the new
learning to reconsider their prior knowledge.

Cognitive science research has shown that people learn by interpreting and
constructing information (e.g.. Resnick. 1983. 1987). Learning is viewed as a
constructive, knowledge-building process (and often a collaborative one) rather
than one of absorption (13erpiter. 1994: Roschelle, 1992). This principle has
been used as the basis for thl design of instructional scenarios which facilitate
goal-driven interpretation and construction of knowledge (e.g., Edelson. 1993:
Ng & Bereiter, 1991: Schank. Fano, Jona, & Bell, 1993/1994). Van Berkum.
Hijne, de Jong, van Joolingen. and Njoo (1991/chapter 15) discuss learning en-
vironments in which computer simulations are used for instruction. They too
distinguish between the learner's goals and the instructor's goals. and identify
four aspects of the design of such systems: simulation models, learning goals.
learning processes, and learning activity. In their model, learning goals have
three dimensions: knowledge ,ategory (type of knowledge), knowledge repre-
sentation (representation of that knowledge). and knowledge scope (generality
and applicability of that knowledge). Learning occurs through interaction with
simulated environments utsing four types of learning actions (orientation, hy-
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pothesis generation. testing. and evaluation) which are guided by the learning
goals. As in Ng's model, learning is modelled as an active, constructive, and
exploratory process, and the educational environment is designed to support
such a process.

To this point, such applications of goal-driven learning models have been
pursued independently of investigations of computer models of the goal-driven
learning process itself. However, one of the goals of this volume is to show-
by bringing together perspectives from diverse communities-the contributions
that results from divergent research perspectives can make to one another, and
to highlight the common questions that remain to be addressed. The previous
discussion suggests the value of analyzing the goal-driven learning processes in
humans as the basis for the design of instructional material and educational
environments. In addition to its obvious practical value, this approach can be
useful in empirically validating theories of goal-driven learning.

10 Summary

Computational and psychological investigations of goal-driven learning have
addressed, broadly speaking. issues of what to learn, whether to learn, how
to learn, and when to learn. In goal-driven learning, decisions about what.
whether, how. and when to learn are determined by explicit reasoning about
the reasoner's needs for information. Although many aspects of goal-driven
learning have been investigated in diverse fields, that research has been con-
ducted in a piecemeal fashion, largely segregated by field. Even when multiple
studies have been conducted in a single field, as is the case for artificial intel-
ligence, each study has tended to concentrate on a few aspects of the problem
without placing those aspects within a unifying framework and examining their
larger implications.

This chapter has presented a unifying picture of existing goal-driven learning
research in terms of a new framework for modeling goal-driven learning, in terms
of the types of goals that may guide learning, and in terms of the ways those goals
can influence learning, The chapter has also discussed some of the pragmatic
ramifications of the goal-driven learning model, both for intelligent systems
and for educational applications. Those ramifications provide motivations for
advancing our understanding of the goal-driven learning process.

The framework presented here is not suggested as a final theory of goal-driven
learning, but rather a devie for understanding the relationships of different
results relevant to goal-driven learning and for suggesting issues that must be
addressed with further investigation through a coordinated multidisciplinary
research effort. The individual models and perspectives of the following chapters
illuminate specific aspects of the framework and the issues that remain to be
addressed in future research.
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This paper describes a methodology for aiding the learning of
troubleshooting tasks in the course of an engineer's work. The
approach supports learning in the context of actual, on-the- ob
troubleshooting and, in addition, supports performance of the
troubleshooting task in tandem. This approach has been
implemented in a computer tool called WALTS (Workspace for Aiding
and Learning Troubleshooting) . This method aids learning by
helping the learner structure his or her task into the conceptual
components necessary for troubleshooting, giving advice about how
to proceed, suggesting candidate hypotheses and solutions, and
automatically retrieving cognitively relevant media. WALTS
includes three major components: a structured dynamic workspace
for representing knowledge about the troubleshooting process and
the device being diagnosed; an intelligent agent that facilitates
the troubleshooting process by offering advice; and an intelligent
media retrieval tool that automatically presents candidate
hypotheses and solutions, relevant cases, and various other media.
WALTS creates resources for future learning and aiding of
troubleshooting by storing completed troubleshooting instances in
a self-populating database of troubleshooting cases. The
methodology described in this paper is partly based on research in
problem-based learning, .earning by doing, case-based reasoning,
intelligent tutoring systems, and the transition from novice to
expert. The tool is currently implemented in the domain of remote
computer troubleshooting.



Introduction

Sophisticated devices and systems, such as computers, are widespread and

growing in use. With the growth of complex technology an imperative need for

efficient and effective troubleshooting skills has developed. Troubleshooting

technologically sophisticated devices is often a difficult, complex process to

carry out and learn: efficient, effective troubleshooting generally requires

intimate knowledge of complicated devices and proficient reasoning skills and

strategies.

Computing technology has advanced to the point where tools supporting

both the performance and learning of complex engineering tasks such as

troubleshooting are now possible. Many troubleshooters employ advanced

computing technology in the course of their jobs. These computers are often

used to help troubleshooters carry out their jobs, but the same compuzers are

typically not used to help troubleshooters learn to do their jobs better.

While these computers could be used to provide training separate from ihe

performance of troubleshooting, a more effective approach may be to use these

computers to support learning "on-the-job," while professionals are engaged in

actual troubleshooting. Learning from direct experience, or "learning ox

doing," has been acknowledged as an effective educational approachr

This paper describes a methodology for aiding the learning of

troubleshooting tasks in the course of a professional engineer's wcrk. Thls

methodology has been realized in a computer tool called WALTS (W',orkspace for

Aiding and Learning TroubleShooting). WALTS is currently implemented in the

domain of remote computer troubleshooting. Each component of this method04ogy

and its implementation in the WALTS tool is described in the following

sections. The Summary sect:on provides a synopsis of the methodology invOeved

in producing WALTS and its relation to previous work.

Structuring Troubleshooting to Aid Learning

Because of the complex:ty and constant innovation of sophisticated

technology, professional troubleshooters must perpetually be learning about

their domain. To become more efficient and effective performers,

troubleshooters must also continually add to and refine their reasoning sk:lls

and strategies. A particular challenge for aiding on-the-job learning :s to
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support learning without harming performance. Ideally, such a methodology

should produce benefits for both performance and learning. The methodology

described in this paper is based on structuring the performance of

troubleshooting such that both performance and learning are enhanced in

tandem.

The WALTS system includes three major components for structuring

troubleshooting (see Figure 1). One, the Cognitive Troubleshooting Workspace

and the Causal Links Workspace allows troubleshooters to represent knowledge

about the troubleshooting process and the device being diagnosed. Next, the

Facilitator is an intelligent agent that facilitates the troubleshooting

process by offering advice. Finally, an intelligent media retrieval tool

called the Media Retrieval Workspace automatically presents candidate

hypotheses and solutions, relevant cases, and various other media.

Representing the Conceptual Structure of Troubleshooting

The methodology described in this paper involves representingc know edce

in a form that is functional for troubleshooting. Representing

troubleshooting knowledge entails separating the knowledge used in

troubleshooting into conceptual components, specifying supporting and

disconfirming relations between the components, and specifying causal

relations between the components. In the Cognitive Troubleshooting W.orftspace

of the WALTS system, a troubleshooter can document, structure, class::x" an-

display the knowledge used in the troubleshooting and create and display.

supporting or disconfirming relationships between objects. In the Causal

Links Workspace troubleshooters can create and display causal relations

between objects.

The knowledge used in the troubleshooting process is separated into i:s

conceptual components. Five conceptual components are identified and

described below: symptoms, configuration data, state data, hypotheses, tests,

and solutions.

* Symptoms. Symptoms are the set of system behaviors someone considers

problematic that the troubleshooter is trying to correct and, perhaps,

find causes for. Example symptoms for a computer system might include t-he
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system's inability to make a network connection or format a disk. For a

human, symptoms might include a rash or chest pains.

"* Configuration data. Configuration data includes the relatively stable

parts of a system. For a computer system this might include hardware and

software. For a human, this might include sex, weight, or age.

"* State data. State data is the set of relatively inconstant system

behaviors (not symptoms) and the settings or values of changeable system

variables. Examples for a computer system might include a condition when

a computer is connecting to some devices on a network but not others or

the setting of some variable in a configuration file. Examples for a

human might include heart rate, blood pressure, or blood alcohol level.

"• Hypotheses. Hypotheses are the possible causes of a set of symptoms. For

a computer, this might be a broken piece of hardware or a wrong settino of

some system variable. For a human, this might be a tumor, disease, or

dietary problem.

• Tests. Tests are the actions taken to demonstrate the validity of a

hypothesis or solution. Tests can be implemented by changing the value of

a system variable or adding or subtracting components from the syszen.

The result is a set of (hopefully) observable system behaviors. :f a

troubleshooter suspects a network card is the cause of a symptom in a

computer, a test might include removing the network card to see if the

symptom behavior is still displayed by the computer. An example test on a

human might include implementing a low salt diet to validate a hypothesis

that high sodium levels are the cause of an individual's high blood

pressure.

* Solutions. Solutions are the actions taken to correct a set of symptoms.

Solutions can be implemented by changing the value of some system. A

solution may be the same as a test: however, solutions are specific to

changing the behaviors c: "ne system that are expressed as the set of

symptoms. An example so':.on for a computer system includes replacing a

bad network card when a ccmputer system is not connecting to the network.

A solution for a human condition might include removing a malignant brain

tumor to restore normal brain function.
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These conceptual components explicitly structure the knowledge used to carry

out the troubleshooting task in a way that supports the development and

evaluation of hypotheses and solutions. Each fragment of knowledge used in

the troubleshooting process is classified with these conceptual components

into "knowledge objects". An explicit representation of the knowledge and

process for troubleshooting supports learning [.4].

To evaluate hypotheses and solutions in this methodology, "supporting" or

"disconfirming" relations and causal relations can be established between the

knowledge objects used for troubleshooting. A supporting relation indicates

that a knowledge object is confirming evidence for a hypothesis or solution.

Similarly, a disconfirming relation denotes negative evidence for a hypothesis

or solution. With supporting and disconfirming relations between knowledge

objects, a troubleshooter links and assesses hypotheses and solutions dire:tly

with system data. Causal relations between knowledge objects are used to

represent the causal chains involved in generating symptoms. Understandinc

the causes of symptoms is important for generating hypotheses and solutions

and for developing causal knowledge about a device.

Troubleshooters can create and classify their knowledge by creaz::•n- ex

windows in the Cognitive Troubleshooting Workspace. Each text window

identifies the type of knowledge object it is in the title bar, the knowledge

itself (typed in by the troubleshooter), and any supporting or disconflrning

relationship with an active text window. Supporting and disconfirming

relations are created by dragging and dropping between text windows and

specifying the type of relation in a dialog box. The bar at the botton c4 :he

text window is displayed as green if it has a supporting

relationship with the active window, red if disconfirming, and gray if no

relation has been specified by a troubleshooter.

Troubleshooters can use another workspace in WALTS called the Causal

Links Workspace to create causal links between objects. Users drag objects

from the Cognitive Troubleshooting Workspace into the Causal Links Workspace.

In the Causal Links Workspace users can drag and drop objects to other obnec:s

to create causal relations that are represented by arrows.
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Intelligently Facilitating the Troubleshooting Process

Learning reasoning skills and strategies involved in troubleshooting

complex devices is also supported by "facilitating" troubleshooters' reasoning

to make it more efficient and effective. Facilitating involves actively

offering timely advice while troubleshooters carry out the troubleshooting

task. For example, if a troubleshooter generates a large number of

hypotheses, advice to try to eliminate hypotheses or to evaluate the most

likely hypotheses is given immediately. Or, if a troubleshooter tries to

implement a solution that has disconfirming evidence, the system suggests the

troubleshooter avoid a solution that has negative evidence.

Advice can and sometimes should be ignored by troubleshooters. As

troubleshooters learn to make their reasoning more effective and efficient,

advice should become less obtrusive. In the present methodology

troubleshooters can control how obtrusive the advice is such that it can go

from being totally intrusive to the troubleshooting process to providing no

advice at all.

In the WALTS system, advice about how to make the troubleshootina zrccess

effective and efficient is given by an intelligent agent called the

Facilitator. The Facilitator actively observes the Cognitive Trouýbleshooting

Workspace. When it encounters a condition in which it can give advice, it

offers this advice to the user. Advice to the user can be presented w:th a

beep, with a flash of the screen, in a dialog box that the user must clear

from the screen, in a simple text window (as displayed in Figure 1), n=: a!

all, or any combination of the above as controlled by users.

Intelligently Retrieving Relevant Information

The methodology described in this paper embodies four major goals for

providing information for the learning troubleshooter. First, information

furnished by the tool to troubleshooters serves their specific problem-scvina

and learning goals 14]. Next, access to manuals, technical specifications,

instructions, and past troubleshooting cases is provided and involves little

or no effort on the part of the troubleshooter. Third, retrieved media are

labeled with a "cognitive media type" which classifies the media's potential
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utility for problem-solving and learning [5]. Finally, hypotheses and

solutions based on past troubleshooting cases are suggested when appropriate.

The Media Retrieval Workspace in WALTS provides the troubleshooter's

interface to media retrieval. The Media Retrieval Workspace automatically

retrieves media based on the current contents of the Cognitive Troubleshooting

Workspace. Users can also initiate manual searches in the Media Retrieval

Workspace. WALTS has access to large free-form text databases of previously

completed troubleshooting cases relevant to its domain and various multimedia,

on-line manuals, instructions, and technical specifications. WALTS also has

access to previous troubleshooting cases accomplished with the WALTS tool.

Retrieved media is labeled with its cognitive media type, its physical media

type (e.g. text, picture, sound or movie), the type of WALTS object or the

database from which it comes, a short description, and a relevance metric.

The structured knowledge furnished by the Cognitive Troubleshooting

Workspace allows for efficient, directed information retrieval and storage.

The Media Retrieval Workspace's automatic retrieval uses the structure of the

knowledge contained in the Cognitive Troubleshooting Workspace to weigh: and

prune searches. These directed searches help overcome a traditional problem

of retrieving more media from a large database than a user can handle. Each

retrieved media includes a display of the Cognitive Troubleshooting Workspace

categories from which it was retrieved. Relevance metrics are computed and

displayed to represent the quality of the matched media. In addition,

previous WALTS cases are stored in a structured format allowing for much More

efficient and useful access than is normally allowed with free-form text

databases. If a Hypothesis or Solution is retrieved from a previous WALTS

case, the user can simply double-click on the the retrieved object in the

Media Retrieval Workspace to add it to the Cognitive Troubleshooting

Workspace. Users can also display a complete previous WALTS case retrieved

with the Media Retrieval Workspace.

SuIMMary

In the domain of WALTS, the troubleshooters' learning goals are to

acquire knowledge about the devices being diagnosed and to improve reasoning

skills and strategies associated with troubleshooting. The problem-solving



goals are to generate a successful explanation (hypothesis) and remedy

(solution) for a device's problems. The methodology described in this paper

attempts to provide support for both sets of goals in tandem by providing a

structured workspace to document the troubleshooting process, an intelligent

"facilitator" with troubleshooter-controlled obtrusiveness to make the process

more effective and efficient, and automatically furnished information that is

useful and relevant.

The emphasis in the methodology used to produce WALTS is to structure the

"doing" of troubleshooting such that performance and learning of

troubleshooting is enhanced. Expert problem-solvers represent knowledge

according to abstract principles relevant for problem-solving [21. With the

structure of the Cognitive Troubleshooting Workspace, WALTS attempts to "jump-

start" this type of abstract classification for novices. Like -he SHERLOCK

system [3), WALTS provides an intelligent facilitation environment for

learning anchored in experience. Unlike SHERLOCK, in which the .raining is

separated from performance, WALTS is embedded in the actual perfornance

situation. As in problem-based learning environments, the methodoloo"

described in this paper grounds knowledge about the devices being diagn:_zrn

the performance situation itself and supports the development of diagcncstz

reasoning skills [1).
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Abstract

In case-based reasoning systems, several learning techniques may apply to a given situation. In a failure-
driven learning environment, the problems of strategy selection are to choose the best set of learning algo-
rithms or strategies that recover from a processing failure and to use the strategies to modify the system's
background knowledge so that the failure will not repeat in similar future situations. A solution to this prob-
lem is to treat learning-strategy selection as a planning problem with its own set of goals. Learning goals. as
opposed to ordinary goals, specify desired states in the background knowledge of the learner, rather than
desired states in the external environment of the planner. But as with traditional goal-based planners. man-
agement and pursuit of these learning goals becomes a central issue in learning. Examples are presented
from a multistrategy learning system called Meta-AQUA that combines a case-based approach to learning
with nonlinear planning in the knowledge space.

1 Introduction

As case-based reasoning (CBR) research addresses more sophisticated task domains, the associated learning issue.,
involved become increasingly complex. Multistrategy learning systems attempt to address the complexit\ of such
task domains by bringing to bear many of the learning algorithms developed in the last twenty years. Yet the goal of
integrating various learning strategies is a daunting one. since it is an open question as how best to combine often
conflicting learning-mechanisms. This paper examines the metaphor of goal-driven problem-solving as a tool for per-
forming this integration. Learning is viewed as simply another problem to solve: the learning problem is formulated
by posting learning goals (such as goals to answer a question or to reconcile two divergent assertions). A plan is
assembled by choosing various learning algorithms from the system's repertoire that can achieve such goals.

In formulations with conjunctive goals. however, numerous difficulties arise such as goal conflicts, protection inter-
vals, and many-to-many relationships between goals and algorithms. For instance, a familiar goal conflict in planning
systems is the "brother-clobbers-brother" goal interaction (Sussman. 1975). whereby the result of one plan that
achieves a particular goal undoes the result or precondition of another plan serving a different goal. If a learnin- ,oal
specifies a state change to the background knowledge of the system, rather than a state change in the world, then
learning plans can have similar effects. Changes to specific knowledge may affect previous changes to the back-
ground knowledge performed by other learning algorithms.

This paper illustrates such interactions with a multitrategy learning system called Meta-AQUA. The performance
task in Meta-AQUA is story understanding. That is. given a stream of concepts as the representation for a storx
sequence, the task is to create a causally connected conceptual interpretation of the story. The story-understanding
strategies available to the system are CBR. analogy, and explanation. If the system fails at its performance task. it,
subsequent learning-subtasks are (I) blame assignment - use case-based methodologies to analyze and explain the
cause of its misunderstanding by retrieving past cases of meta-reasoning, (2) decide what to learn - use these case.
to deliberately form a set of learning goals to change its knowledge so that such a misunderstanding is not repeated on
similar stories, and then (3) strategy selection - use nonlinear planning techniques to choose or construct some learn-
ing method by which it achieves these goals. These stages are detailed in Figure 1.



Previous publications have dealt with the blame assignment stage (Cox. 1993, Cox & Ram, 1992- Ram & Cox,
1994). This paper explores how learning goals are spawned when deciding what to learn (Section 2) and how these
goals are satisfied in the strategy-selection phase (Section 3). A simpler system might forego explicit learning-goals
altogether, and directly map a failure to a learning algorithm. The discussion of Section 3 explores, not only how
learning goals are managed, but what leverage is gained over and above a direct mapping itself. The paper's conclu-
sion (Section 4) specifies the relation between the Meta-AQUA system and traditional CBR approaches and discusses
related systems, limitations with Meta-AQUA, and areas for future research.

0. Perform and Record Reasoning in Trace
1. Failure Detection on Reasoning Trace
2. If Failure Then

Learn from Mistake:
* 2a. Blame Assignment

Compute index as characterization of failure
Retrieve Meta-XP Si: A police dog sniffed at a
Apply Meta-XP to trace of reasoning passenger's luggage in the Atlanta
If XP application is successful then airport terminal.

Check XP antecedents
If one or more nodes not believed then S2: The dog suddenly began to bark at

Introspective questioning the luggage.
GOTO step 0

Else GOTO step 0
* 2 b. Create Learning Goals S3: The authorities arrested the

Compute tentative goal priorities passenger, charging him with
* 2 c. Choose Learning Algorithm(s) smuggling drugs.

Translate Meta-XP and goals to predicates
Pass goals and Meta-XP to Nonlin S4: The dog barked because it detected
Translate resultant plan into frames two kilograms of marijuana in the

* 2 d. Apply Learning Algorithm(s) luggage.
Interpret plan as partially ordered network of

actions such that primitive actions are
algorithm calls

3. Evaluate Learning (not implemented)

Figure 1: Meta-AQUA's learning algorithm Figure 2: The drug-bust stor\

2 Deciding What to Learn

Learning goals represent what a system needs to know (Ram, 1991; 1993; Ram & Hunter. 1992; Ram & Leake. in
press) and are spawned when deciding what to learn. Learning goals help guide the learning process by suggesting
strategies that would allow the system to learn the required knowledge.', Given some failure of a reasoner, the task of
the learning system is to adjust its knowledge so that such reasoning failures will not recur in similar situations.- The
learner is therefore modeled as a planning system that spawns goals to achieve this overall task (Hunter, 1990: Ram
& Hunter, 1992). The learner subsequently attempts to create plans resulting in desired new states of its background
knowledge3 that satisfy these goals. The overall aim is to turn reasoning failures into opportunities to learn and to
improve the system's performance.

I. Learning goals also facilitate opportunistic learning (%ec Ram. 1991; 1993; Ram & Hunter. 1992), that is. if all information nec-
essary for learning is not available at the time it is determined what is needed to be learned (e.g.. when a question is posed). then a
learning goal can be suspended. indexed in memory. and resumed at a later time when the information becomes available

2. The learner could also adjust its circumstances in the physical world, such as placing items in a cupboard in the same place to
aid memory retrieval. This paper, however, will not entertain such possibilities. See Hammond (1990) for an approach to such task
interactions and associated learning.

3. The background knowledge includes more than simple domain knowledge. It can also contain knowledge such as metakno'A I-
edge, heuristic knowledge, associative knowledge. and knowledge of process.



Learning goals deal with the structure and content of knowledge, as well as the ways in which knowledge is orga-
nized in memory. Some learning goals seek to add, delete, generalize or specialize a given concept or procedure. Oth-
ers deal with the ontology of the knowledge, i.e., with the kinds of categories that constitute particular concepts.
Many learning goals are unary in that they take a single target as argument. For example. a knowledge acquisition
goal seeks to determine a single piece of missing knowledge, such as the answer to a particular question. A knowl-
edge refinement goal seeks a more specialized interpretation for a given concept in memory, whereas a knowledge
expansion goal seeks a broader interpretation that explores connections with related concepts. Other learning goals
are binary in nature since they take two arguments. A knowledge differentiation goal is a goal to determine a change
in a body of knowledge such that two items are separated conceptually. In contrast, a knowledge reconciliation goal is
one that seeks to merge two items that were mistakenly considered separate entities. Both expansion goals and recon-
ciliation goals may include/spawn a knowledge organization goal that seeks to reorganize the existing knowledge so
that it is made available to the reasoner at the appropriate time, as well as modify the structure or content of a concept
itself. Such reorganization of knowledge affects the conditions under which a particular piece of knowledge is
retrieved or the kinds of indexes associated with an item in memory.

A program called Meta-AQUA (Ram & Cox, 1994) was written to test our theory of understanding. explanation and
learning. Given the drug-bust story of Figure 2, the system attempts to understand each sentence by incorporating it
into its current story representation, explain any anomalous or interesting features of the story, and learn from any
reasoning failures. Numerous inferences can be made from this story, many of which may be incorrect or incomplete.
depending on the knowledge of the reader. Meta-AQUA's background knowledge includes general facts about dogs
and sniffing, including the fact that dogs bark when threatened, but it has no knowledge of police dogs. It also knows
cases of gun smuggling, but has never seen drug interdiction. The learning task in Meta-AQUA is to learn from fail-
ures. incrementally improving its ability to interpret new, stories.

In the drug-bust story, sentence SI produces no inferences other than that sniffing is a normal event in the life of a
dog. However. S2 produces an anomaly because the system's definition of "bark" specifies that the object of a bark is
animate. So the program (incorrectly) believes that dogs bark only when threatened by animate objects (see Figure 3
for the representation 4 produced by Meta-AQUA during blame assignment). Since luggage is inanimate, there is a
contradiction, leading to an incorporation failure. This anomaly causes the understander to ask why the dog barked at
an inanimate object. It is able to produce but one explanation: the luggage somehow threatened the dog.

S3 asserts an arrest scene which reminds Meta-AQUA of a past case of weapons smuggling by terrorists: hosse\ er.
the sentence generates no new inferences concerning the previous anomaly. Finally, S4 causes the question generated
by S2. "Why did the dog bark at the luggage?" to be retrieved. Instead of revealing the anticipated threatening situa-
tion, S4 offers another hypothesis: "The dog detected drugs in the luggage."

The system characterizes the reasoning error as an expectation failure caused by the incorrect retrieval of a known
explanation ("dogs bark when threatened b\ objects," erroneously assumed to be applicable), and a missing explana-
tion ("the dog barked because it detected marijuana." the correct explanation in this case). During blame assignment.
Meta-AQUA uses this characterization as an index to retrieve an abstract case called a Meta-XP (Ram & Cox. 1994)
that is applied to a trace of the reasoning that produced the failure. The instantiation results in an explanation of its
reasoning error, as shown in Figure 3. This composite meta-explanation consists of three parts: a Novel-Situation
centered about "Retrieval Failure," an Erroneous-Association centered about "Expectation Failure" and an Incorrect-
Domain-Knowledge centered about "Incorplration Failure."

Faced with the structure of the reasoning error produced by the blame-assignment phase, the learner determines the
learning goals for the system. First, since the seemingly anomalous input (marked "Old Input" in Figure 3) has been
incorporated in the story and later reinforced by the coherence of the story structure, and since no contradictions
occurred as a result of this inference, the learner ports a knowledge reconciliation goal. The goal is to adjust the back-
ground knowledge so that neither dogs barking at animate objects nor dogs barking at inanimate objects will be con-
sidered anomalous by the understander. Thil learning goal is appropriate because even though one item is an

4. Attributes and relations are represented expliciI. in Meta-AQUA and in this figure. For instance, the ACTOR attribute of an
event Dog-bark. 12 with the value Dog.4 is equi% alcnt to the explicitly represented relation ACTOR.21 having a doma _in value of
Dog-bark.12 and a co-domain value of Dog 4 In addition, all references to TRUTH attributes equal to out refer to the dcrmai4.
being out of the current set of beliefs. See Cox t1993) and Ram & Cox (1994) for further representational details. The -Internal
Structures Window" of Figure 4 shows the top-l'ecl frame representation corresponding to Figure 3.



instantiated token (a particular dog barked at a specific inanimate object). while the other is a type definition (concept
specifying that dogs generally bark at animate objects), they are similar enough to each other to be reconcilable.
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Figure 3: Instantiated composite meta-explanation

Secondly. given that an expectation failure triggered the learning, and (from the blame assignment phase) gixen that
the failure resulted from the interaction of misindexed knowledge and a novel situation, Meta-AQUA posts a goal to
differentiate between the two explanations for why the dog barked (nodes M and M' in Figure 3). Since the conflict-
ing explanations are significantly different (for example, they do not share the same predicate, i.e., detect \er'u,
threaten), a knowledge-differentiation goal is licensed, rather than a goal to reconcile the two types of explanations
The differentiation goal is achieved if the system can retrieve proper explanations given various situations. The orig-
inal misunderstanding of the story occurred, not because the explanation that dogs bark when threatened is incorrect
in general, but rather because the system did not know the proper conditions under which this explanation applies.
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In addition to posting these two learning goals. Meta-AQUA places a tentative ordering on their execution (see Fig-
ure 4 for program output when deciding what to learn). With no other specific knowledge concerning their respective
relations. a good default heuristic is to order them by temporal order of the failures involved in the original reasonhng
trace. The reason this may be useful is that if it is determined that the first failure was indeed not an error but a misun-
derstanding or was caused by faulty input, then the reasoning that followed from the first failure (or other assump-
tions depending on the nature of the first failure that led to the second) may have contributed to the cause of the
second. Thus. learning acquired from the tirst failure may show that the subsequent reasoning was irrelevant, or it
may yield more information to be used on the second goal. Therefore. the decide-what-to-learn stage outputs the
know ledge-reconcilIi ation goal with priorit% o% er the knowledge-differentiation goal.

3 Strategy Selection and Combination

In the strategy-selection stage, Meta-AQU'A constructs a learning plan to realize the learning goals posted b\ the pre-
vious stage (see Figure 4 for program output during strategy selection phase). This entails not only choosing the algo-
rithms and operators to achieve the learning goals. but perhaps also spawning new subgoals. TO help the s\ stem
create a plan for a learning goal with two argument-.. the following types of questions can be posed about the reason-
ing chain. For example. with the knowledge -differentiation goal. the focus starts at the error that triggered the intro-
spective-explanation episode. that is. at the ecrpcittion failure. Given that the reasoner expected explanation E to be
correct, but later decides that A, is the actual e~planation. the system needs to determine:

"* Was the actual occurrence. A,. fore~eeable?

"* If so, was A, considered?
"* Is there still a possibility that A, is incorrect?



"* Is there still a possibility that E is correct?
"* How confident is the system in A2 or any of the input associated with establishing A2 ?

"* How much experience does the system have with A2 and E's abstract progenitors?

The answers to these questions enable the system to choose learning algorithms, strategies, or operators. For exam-
ple, since the explanation provided by the story (A2 ) provides more coherence to the understanding of the story, the
system assumes that there is no error in the input. However, because the system has no prior experience with the
instance (and thus the system neither foresaw nor considered the explanation), the learner posts another goal to
expand the concept, thus producing M'. Explanation-based generalization (EBG) (DeJong & Mooney. 1986: Mitch-
ell, Keller & Kedar-Cabelli, 1986) can then be selected as an appropriate learning algorithm.

A more difficult problem is to differentiate the applicability conditions for the two generalized explanations (M . the
one produced by generalizing the detection explanation, A2, and M, the original abstract pattern that produced the ini-
tial threaten explanation, E) by modifying the indexes (I" and I) with which the system retrieves those explanations. If
the two problems of erroneous association and novel situation were to be treated independently, rather than as a prob-
lem of interaction, then an indexing algorithm would not be able to ensure that the two explanations would remain
distinct in the future. That is, if the learner simply detects a novel situation and automatically generalizes it. then
indexes it by the salient or causal features in the explanation, and if the learner independently detects an erroneous
retrieval, and re-indexes it so that the same context will not retrieve it in the future, then there is no guarantee that the
resultant indexes will be mutually exclusive. Instead, the system must re-index E with respect to A2 . not simpl. with
respect to the condition with which E was retrieved. Therefore, a direct mapping from blame assignment to strategp
selection without the mediation of learning goals is problematic.

The problems to be solved, then, are determining the difference between A2 and E, and, in the light of such ditfer-
ences. computing the minimal specialization of the index of E and the maximally general index of A, so the. will be
retrieved separately in the future. In the case of the story above, the problem is somewhat simplified. The difference is
that retrieval based on the actor relation of barking actions (dogs) is too general. The threaten explanation applies
when dogs bark at animate objects, while the detection explanation is appropriate when dogs bark at containers.

The knowledge-reconciliation goal between the conceptual definition of dog-barking being limited to animate objects
and the fact that a particular dog barked at a piece of luggage can be thought of as a simple request for similarit\ -

based learning (SBL) or inductive learning (for example. UNIMEM's SBL algorithm in Lebowitz. 1987. or abstrac-
tion transmutation as in Michalski. 1994). The system is simply adding an additional positive example to the
instances seen. An incremental algorithm is required because this instance has been discovered after an initial concept
has been established some time in the past.

An interesting interaction can occur, however, if the system waits for the result of the EBG algorithm required b\ the
knowledge-expansion subgoal spawned by the knowledge-differentiation goal discussed above. The algorithm will
generalize the explanation (that this particular dog barked at a particular piece of luggage because it detected mari-
juana) to a broader explanation (that dogs in general may bark at any container when they detect contraband). Thus.
the example provided to the inductive algorithm can be more widely interpreted, perhaps allowing its inducti.e bias
to generalize the constraint, C. on the object of dog-barking to physical-object (the exhaustive case of anI -
mate-obj ect and inanimate-obj ec t). whereas a single instance of a particular breed of dog barking at a spe-
cific brand of luggage, A,, may limit the inductive inference if no additional domain knowledge is available.

Unfortunately, however, because the EBG algorithm uses the representation of the dog-bark definition, and the induc-
tive algorithm changes this definition, the induction must occur first. Thus, the learner cannot take advantage of the
opportunity cited in the previous paragraph. One important implication of this point is that in systems which plan to
learn, if the reasoner does not anticipate this second interaction (thus placing EBG before the induction), the sx stem
must be able to perform dynamic backtracking on its decisions.

To notice these types of interactions, however, requires a least-commitment approach such as that used in a non-linear
hierarchical planner like Nonlin (Ghosh, Hendler. Kambhampati, & Kettler, 1992: Tate, 1976). Likewise. the system
must detect any dependency relationships so that goal violations can be avoided. For example, when the definition of
dog-barking is modified by generalizing its constraint of what dogs bark at to physical-object from an:- -

mate-object, any indexing based on the modified attribute must occur after this modification, rather than before
it, to avoid indexing with obsolete conceptual knowledge.:



Figure 5 shows a learning-operator definition for the indexing strategy that manages mutual indexing between two
concepts. The operator schema determines that both items must be independently indexed before they are indexed
with respect to each other. The action schema has filter conditions that apply when both are indexed and both are XPs.
An unsupervised condition specifies that if there exists a change in the explained action, then it must occur before the
execution of this schema. That is, a linearization must be performed on external goals to reorder any other schema
that may establish the change. It says in effect that we want all attributes of the target concept to be stable before it
operates on the concept; no other operator can change an attribute in order for the changes performed by indexing to
be unaffected. Note that the action schema of abstraction in Figure 6 has an effect that includes such a change to its
addlist. Therefore, if both schemas are being instantiated, Nonlin will automatically order the abstraction before the
indexing. A similar unsupervised condition prevents generalization from occurring before the concept is stable.

(opschema mutual-index-op (actschema do-mutual-xp-indexing
:todo (index-wrt-item ?x ?y) :todo (index-dual-items ?x ?y)
:expansion ( :expansion ( (stepi :primitive

(stepl :goal (indexed ?x)) (perform-mutual-indexing ?x '>y))
(step2 :goal (indexed ?y)) :conditions
(step3 :action (:use-when (indexed ?x) :at stepl)

(index-dual-items ?x ?y()) (:use-when (indexed ?y) :at stepl!
:orderings( (:use-when (isa xp ?x) :at stepl)

(stepl -> step3( (:use-only-for-query
(step2 -> step3)) (explains ?explains-node ?xi

:conditions ( :at stepl)
(:precond (indexed ?x) (:use-only-for-query
:at step3 :from stepl) (domain ?explains-ncde

(:precond (indexed ?y) ?explained-action)
:at step3 :from step2i :at stepl}

(:use-when (not tequal ?x ?y)) (:unsuperv (changed true 1exp:aineo-a~t::n
:at stepl)) :at stepl)

.effects C)

•variables 'ýx ?y1 ) :effects
(stepl :assert iindexed-wrt 7x
tstepl :assert ýindexed-'.rt :x

:variables (?x ?y 'exp 1ains-node 'ex-*sane_-aý.:n,

Figure 5: Mutual-indexing schemas

(actschema do-abstraction-change
todc (abstracted zr-l 'r2)
:expansi:n ( istepl :priritive (perform-abstraction ?rl 'r.)
conditions i

:use-when (isa relation ?rl( :at stepl)
:use-when isa relat:on ?r- :at stepl)
:use-when (relation ?r: 'rl-type( :at stepl)
:use-when 'relation ?r2 ?r2-type) :at stepl)
:use-only-for-query (domain ?rl 'rl-domain) :at stepl)
:use-only-for-query (co-domain ?rl ?c) :at stepl)
:use-only-for-qjery ico-domain ?r2 ?a) :at stepl)
:use-only-for-query (parent-of ?c ?c-parent) :at step!,
:use-only-for-query (parent-of ?a ?a-parent) :at stepa,

(:use-when equal ?ri-type ?r2-typei :at step!)
(use-when equal 'c-parent ?a-parentý :at stepi))

effects (
(stepl assert (co-domain ?rl ?c-parentH)
(stepl :assert (changed true 'rl-domain))
(stepi :delete ico-domain ?rl ?c))
(step! delete (changed false ?rl-domainMl)

:variables (?rl 'rZ 'rl-type ?r2-type ?rl-domain 'c 'a ?c-parent 7a-parentý,

Figure 6: Abstraction schema

Therefore. the final learning plan Meta-AQUA constructs is (I) perform an abstraction transmutation on the ne"
example of dog barking (realizing that dogs bark at containers); (2) perform EBG on the new explanation (producing
a generalized version); (3) index the generalized XP in isolation; and finally, (4) use the new concept definition to
mutually differentiate and index the two generalized explanations of why dogs bark. A subsequent story, such that a
police-officer and a canine enter a suspect's house, the dog barks at a garbage pail. and the suspect is arrested for pos-
session of some marijuana found in the pail. causes no anomaly. Indeed. Meta-AQUA expects some type of contra-
band to be found in the container after it reads that the dog barked, but before it is told of its existence in the story
Thus, the learning improves both understanding and prediction.

5. This result supersedes the conjecture by Ram & Hunter (1992) that. unlike standard planning techniques, interactionN and
dependencies do not occur with learning goals
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4 Conclusions

Although Meta-AQUA is firmly in the CBR tradition, our approach diverges from it somewhat. Three elements tradi-
tionally characterize CBR. First, CBR usually processes instances or concrete episodic cases. However, some sys-
tems emphasize the integration of generalized knowledge and cases (e.g., Aamodt, 1993), and moreover, like Meta-
AQUA, some CBR systems actually process abstract cases, including XPs (see Schank, Kass & Riesbeck, 1994).
Secondly, CBR emphasizes the role of memory retrieval of past examples, rather than reasoning from first principles.
This focus has led to research on indexing vocabulary and case adaptation. However, Meta-AQUA is a hybrid system
that combines the CBR of the first two learning phases with the nonlinear planning of the third. Finally, traditional
CBR systems stress goal-directed activity to focus both processing and learning (Kolodner, 1993: Ram & Hunter.
1992, Schank, 1982). Our approach to learning is also goal-directed, but in a very different style. Meta-AQUA is the
first CBR system to specifically plan in the knowledge space using goals that specify changes in that space. Unlike
INVESTIGATOR (Hunter, 1990), which creates plans in the external world to achieve learning goals (e.g.. access a
database to answer a question), Meta-AQUA's plans operate on the internal word of the system's background knowl-
edge. Although many computational systems use a reflective reasoning approach (e.g., Collins, Birnbaum. Krulwich.
& Freed, 1993; Fox & Leake, 1994; Oehlmann, Edwards, & Sleeman, 1994; Plaza & Arcos, 1993: Stroulia & Goel.
in press), and a few have used the planning metaphor in learning (Hunter. 1990; Quilici, in press: Ram & Hunter.
1992: Ram & Leake, in press; Redmond, 1992), none of these systems have applied the planning metaphor as strictlx
as Meta-AQUA; none execute a planner like Nonlin on its own knowledge.

A number of advantages accrue from the mediation of learning through satisfaction of learning goals. First. learning
goals decouple the many-to-many relationship between failures and algorithm. Secondly, an opportunistic approach
to solving learning problems can be achieved by suspending the goals and resuming their pursuit at a time when sat-
isfaction is more likely. Thirdly, learning goals allovk chaining. composition. and optimization of the means by %khich
learning goals are achieved. Fourthly, because nonlinear plans allows parallelism, learning algorithms may be exe-
cuted concurrently. Finally, the use of learning goals allows detection of dependency relationships so that goal %iola-
tions can be avoided.

Future research is directed toward incorporating more learning strategies. One of the weak points of the current s% s-
tem is that it reasons during learning at a macro-level. Meta-AQUA recognizes the functional difference bet\%een
generalization and specialization and therefore can choose an appropriate algorithm based on which algorithm is
most appropriate. For example, it cannot currently select between competing algorithms that both perform generali-
zation. Meta-AQUA does not reason at the micro-level, as do systems that address the selective-superioritN problemb
in inductive learning (see, for instance. Brodley. 1993: Provost & Buchanan, 1992; Schaffer. 1993). although the
scope of learning problems solved by Meta-AQUA is greater than these other systems.

Another limitation of the Meta-AQUA implementation is that learning self-evaluation (step 3 of Figure I ) does not
exist. Thus, Meta-AQUA cannot cross-validate or compare various successful algorithms, nor can it currentl.\ judge
when learning fails, and another algorithm must be chosen. Just as it detects, explains, repairs and learns from reason-
ing failures, an interesting line of future research is to allow Meta-AQUA to reason about its own learning.

To perform multistrategy learning, a CBR sy stem must consider a number of factors that are not significant in isolated
learning systems. In particular. a system must be able to handle insufficient resources and knowledge and manage
dependency relations between learning algorithms at run-time. Many alternative solutions and interactions ma.N
occur, even when reasoning about simple situations. Treating the learner as a planner is a principled way to confront
these difficulties. Many of the techniques and results from the planning literature can be appropriated in case-based
systems to provide a better level of robustness and coverage in situations where many types of failure may occur. The
aim is to transform these failures into opportunities to learn and improve the system's overall performance.
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6. Empirical results suggest that various inductise algorithms are better at classifying specific classes or particular distributions of
data than others. Each algorithm is good at some hut not all learning tasks. The selective superiority problem is to choose the most
appropriate inductive algorithm, given a particular set of data iBrodley. 1993).
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Abstract learner,2 a type of system that attempts to improve its
The utility problem in learning systems occurs when problem-solving performance by learning search-control
knowledge learned in an attempt to improve a sys- knowledge, called control rules, that reduce the amount
tem's performance degrades performance instead. We of search it needs to perform by eliminating dead-end
present a methodology for the analysis of the utility paths and selecting profitable ones. What Minton and
problem which uses computational models of problem
solving systems to isolate the root causes of a utility others noticed about systems like PRODIGY/EBL was
problem, to detect the threshold conditions under that the system could actually get slower after having
which the problem will arise, and to design strategies learned control rules, rather than faster. At each step in
to eliminate it. We present models of case-based rea- the search space, a control-rule problem solver has to
soning and control-rule learning systems and compare match all of its control rules against the current state to
them with respect to the swamping utility problem. determine if they should fire. As that library of control
Our analysis suggests that CBR systems are more re- rules grows in size, the cost of matching the control rules
sistant to the utility problem than CRL systems. increases to the point that it outweighs or "swamps" the

1. Introduction savings in search they provide.
This side effect of learning was called the "utility

All intelligent systems that learn can suffer from the problem": learning designed to improve the system's
utility problem, which occurs when knowledge learned performance ended up degrading performance instead
in an attempt to improve a system's performance de- (HOLDER ET AL. 1990). Since Minton's discovery of this
grades performance instead (MINTON 1990). In this pa- "'swamping" utility problem in PRODIGY, researchers
per, we analyze the utility problem and examine its ef- have identified many different types of utility problems.
fects in case-based reasoners and control-rule problem each manifesting itself in slightly different ways. Be-
solvers. Our methodology for this analysis couples a cause some types of utility problems are affected by the
functional analysis of an Al system with a performance hardware architecture of the system and others are

analysis of the system's algorithmic and implementa- largely independent of hardware concerns, we can group
tional components. Such a computational model allows the different types of utility problems into two rough

the identification of the root causes of the utility prob- classes: architectural utility problems. which arise from

lem, which are combinations of algorithmic characteris- interactions between a system's learning and its hard-

tics of an Al system (e.g., serial search of memory) with warachitetue, a s earc-pe andlits p rbe
ware architecture, and search-space utility problems.

particular "parameters" that affect its operation (e.g., which arise from interactions between learning and
knowledge base size). Identifying the precise algorithmic problem solving algorithms. A full discussion of the dif-
nature of a root cause allows us to predict the threshold ferent types of utility problems is contained in (FRANCIS
conditions under which it will affect a system severely & RAM 1994). In this paper, we will focus on swamping.
enough to cause a utility problem. which is the utility problem most commonly encountered

Our analysis provides a general and theoretical in is te We wll most com monly hen utered

framework tor addressing this problem in ,,%,tems that in learning systems. We will reserve the term "the utility
problem" for the general utility problem, and will refer

have been studied empirically (e.g., control-rule learning to specific versions of the utility problem, such as
(CRL) systems) and in systems for which little utility swamping, by their names.
analysis has been performed (e.g., case-based reasoning
(CBR) systems). We use this framework to compare CBR 3. A Methodology for Utility Analysis
and CRL systems, and find that CBR system,, are more We propose the use of algorithmic complexity theory as
resistant to the utility problem than CRL systemi a tool for the analysis of the general utility problem. Our

2. Analyzing the Utility Problem methodology involves analyzing different types of Al
systems and decomposing their cognitive architectures

The utility problem was first detected in PRODKIVYEBL into lower-level functional units, including problem-
(MINTON 1988). PRODIGY/EBL is a (,,trol-rule solving engines and memory systems, that can be repre-

2 Etzioni (1992) uses the term meta-level problem solkers for control-

'This research was supported by the United States Air Force LaUoratory rule learning systems. We have avoided this term because of the posihble
Graduate Fellowship Program and the Georgia Institute of Technology A confusion with metacognition. which includes systems thai "knou, •hat
longer version of this paper (FRANCiS & RAM 19941 i,, lipable from they kno," (metaknowledge) and systems that reason about their o~n
ftp.cc.gatech,.edu: /pub/ai/ram/git-cc-94--4 ps Z rea.soning processes (metareasoning. or introspection).



sented by formal algorithmic models. Our algorithmic match time and knowledge base size; in a CBR system, a
approach incorporates both functional-level aspects of similar interaction exists between case retrieval time and
the computation, such as the system's cognitive architec- case library size.
ture and its knowledge base, and implementation-level We can formally define an interaction to be a combi-
aspects, such as the performance characteristics of the nation of a set of parameters, a module, and a set of ef-
system's hardware architecture. This multi-level analysis fects. The module represents the part of the CA that is
is crucial for the study of the utility problem because responsible for the relationship between the parameters
many utility problems arise due to interactions between and their effects. Parameters represent characteristics of
the functional level of the system and the way that func- the system's knowledge base, while effects represent the
tional computation is actually implemented. Our meth- performance measures that affected by the interaction.
odology can be used to identify potential utility problems Thus, an interaction defines a function between learning
as well as to design coping strategies to eliminate their (changes in the knowledge base) and performance
effects. In this paper, we focus on a comparative analysis (changes in the evaluation metric), mediated by the
of case-based reasoning and control-rule systems. characteristics of the algorithmic component of the in-

3.1. Al Systems and Learning teraction (the module).
Utility problems arise when a learning module in the

Formally, we can describe an Al system as a triple (CA, system causes parameter changes which interact with
KB, HA). The cognitive architecture CA specifies a some CA component to produce "side" effects that im-
system in terms of separate functional modules that carry pact the performance measures a learning module is de-
out fixed subtasks in the system, while the knowledge signed to improve. This kind of coupling between a
base KB represents the internal "data" that the CA uses learning module and an interaction is a potential root
to perform its computations. The hardware architecture cause of a utility problem. For a particular root cause.
HA defines the operations that a system can perform at the calculated improvement Fc is the savings that the
the implementation level, as well as their relative costs. learning module is designed to perform. while the actual
The cost (and hence the utility) of an operation may be cost Fa is the actual change in performance taking into
different on different HA's: for example, retrieval might account the side effects of the interaction.
take longer on a serial machine than it would on a paral- By comparing the algorithmic behavior of the learning
lel machine. module, the root cause interaction it is paired A ith. and

3.2. Utility and the Utility Problem the cost and savings functions that they contribute, we

Utility can only be defined in terms of "performance" can compute threshold conditions - limiting % alues for

measurtty c judge the efficiency of a reasoner, such as the parameter changes that the system can tolerate before
measures that jthe actual costs exceed the calculated improvement and
execution time, number of states searched, storage space the system encounters a utility problem. Eliminating the
used, or even quality of solution. These evaluation met- general utility problem involves identifying the root
rics measure the costs that a system incurs during its
reasoning. Given a particular evaluation metric, the util-

system and designing coping strategies that pre ent their
it\' of a learned item can be defined as the change in ex- threshold conditions from being satisfied.
pectation values of a problem solver's performance on
the metric across a problem set (MARKOVITCH & Scoi-r 4. Modeling CRL and CBR Systems
1993). To compute the utility of a change to the system's To compare CBR and CRL systems. we must develop
knowledge base with respect to some metric, we want to computational models of these systems and compare
compute the costs that the system will incur for different learning and problem solving in each.
problems weighted by the probability that the system will The baseline for comparison of the computational
actually encounter those problems. Thus. utility is a model approach is the unguided problem solver ['n-
function not only of the learned item but also of the guided problem solvers (UgPS) are a class of problem
learning system, the problem set, problem distribution, solvers that operate without search control knowledge.
and the evaluation metric. The utility problem occurs The algorithm of a UgPS is a knowledge-free weak
when a learning system makes a change to its KB with
the goal of improving problem solving utility on some Problem Space
metric by a calculated improvement Fc, but which has initial State
the side effect of degrading problem solving utility for
another (possibly identical) metric by some actual
amount Fa that outweighs the savings (i.e.. F,.<Fa,. Solution Pat

3.3. Dissecting the Utility Problem
In general, utility problems are not global, emergent Goal State

properties of computation but can instead be tied to BranchingFactor b =
specific interactions between the CA, the KB, and the average number of choices per node
performance characteristics of the HA. In a CRL system,
the interaction of interest is the relationship between Figure 1. Unguided Search



method guaranteed to find a solution if one exists, such
as breadth-first search; the only knowledge it uses is its Old CA"

operator library. For a given problem p with a solution Cost of Case R .ve
of path length d operating in a search space with vt0"

branching factor b, a UgPS will examine bd nodes during ol Souto Pt

search (see Figure 1). The number of nodes that the sys- (-,i,,, Cue) AtpIhof

tem expands is termed the complexity of a problem and Sa o Pt.n P
is denoted Cp. Because the UgPS solves problems in ex- (dp.inSpae

ponential time, it can serve as a "baseline" against which
more efficient learning systems can be compared. Much (Adapted SOCa"

of "intelligence" can be viewed as attempts to reduce this AiC,

combinatorial explosion through the use of heuristics or 4-CI---
other techniques (NEWELL & SIMON 1975; RAM & c .. "0 Path•p,.,,,ac.

HUNTER 1992; SCHANK & ABELSON 1977). 1 Came)

4.1. Control-Rule Problem Solvers
Learning systems improve over the UgPS by finding Figure 3. Search in the Space of Problem Paths
ways to reduce or eliminate search. A CRL system re- solution path is achieved (see Figure 3). Once the new
duces search by retrieving and applying control rules at solution is found, it is stored in the case library indexed
each state it visits during problem solving, giving it the for future retrieval.
ability to select or reject states. This control knowledge is
a completely different kind of knowledge than operator 5. Analyzing Retrieval Costs
knowledge and must be stored in a separate control rule Our analysis of these models focuses on retrieval costs in
library. If a system's control rule library is empty and CRL and CBR systems-how many retrievals are made.

and how much does each retrieval cost? Retriexal is of-
Problem Space ten cited as the core source of power for CBR s% stems.

Initial Stat - Application of Control Rules• Reduces Space Searched yet the retrieval cost is a critical factor in the sv~amping

utility problem. An analysis of retrieval costs in CRL and
Solution P CBR systems before and after learning reveals interest-

Potential Search Space: Cp ing differences in how each deals with retrieval.
pace Actually Searched: Cp' For our analysis, we will assume that both the CRL

Total Savings of and CBR systems operate on the same problem set. and
Goal Stae--- Guided Search: Cp - Cp' that their problem spaces are defined by the same opera-

tor library. We further assume that the costs of adapta-
Figure 2. Search Guided by Control Rules tion operators are roughly equivalent to those of regular

control rules are not available, the problem solver resorts operators; this assumption may or may not be true for
particular systems but is reasonable for this analxsis.to blind search. Once a solution path has been found, WedinabscoprtnoferealR. hh

correct decisions can be cached in the library as control We define a basic operation of retrieval. R. which

rules that will guide the system in the future (see Figure matching function. In general. for a given hard are ar-

2). This model, while simplified, approximates many chitecture HA, the cost of retrieval for a knovledge li-
existing systems. including Soar and Prodigy brary i, denoted Ri, is a function of both the library i and

4.2. Case-Based Reasoners the item to be retrieved, r: Ri =firi). For a serial hard-

Case-based reasoning is primarily experience-based; ware architecture, HAS, the most important variable in
when a CBR system encounters a new problem, it checks this cost function is the number of items in the knolkl-
its case librar. of past problem solving episodes, or edge library, Ki. We will approximate this serial cost
cases, looking for a similar case that it can adapt to meet function with Ri = cKi, where c is a constant multiplier
the needs of the new problem. Our model or CBR has that approximates the (nearly) linear cost function for
two primary knowledge libraries: the case library itself, matching on serial systems like Has)

indexed so' that the most appropriate case can be re- The particular interaction we will examine is the re-
trieved in new problem-solving situations, and an adap- trieval time interaction: the relationship between the
tation librar. that stores adaptation operators that are retrieval operation Ri, knowledge library size Ki. and
used to transform the cases once they are retrieved, running time t. Because the learning operations in CBR
When a CBR system is presented with a problem, it re- and CRL systems have the effect of increasing the size of
trieves an appropriate past case based on the problem's knowledge libraries in the system, their learning mod-
features, its goals, and the indices it has in its case li- ules coupled with the retrieval time interaction form po-
brary. Then, the case is adapted by performing search in
the space of problem paths: the adaptation operators 3An indexed or parallel memory system might improe on thi, remtneal

transform entire paths into new paths until a satisfactory function ior. then again, might not. depending on the domain. -'we
DOORENBOs 1993 and TAMBE ET AL. 1990)



tential root causes of the utility problem. Now, let's ex- multidomain system, then the swamping problem can
amine the dynamics of learning and retrieval in CBR eliminate the benefits of the learned rules.
and CRL systems and attempt to establish the threshold 5.2. Retrieval in Case-Based Reasonersconditions for the utility problem in each. 52 erea nCs-ae esnr

To analyze utility effects in CBR systems, we need to
5.1. Retrieval in Control-Rule Problem Solvers measure the performance of a CBR system as it learns.
In its initial state, without control rules, a CRL system is To provide a basis for this measurement, we assume that
equivalent to the UgPS. It searches Cp states, retrieving a a CBR system that does not have an appropriate case in
set of operators at each step with a cost of R,. No control memory can resort to some method (e.g., adaptation of a
rules exist, so the cost of control-rule retrieval R, = 0. "null case" or "from-scratch" reasoning) that is cost-
Thus, the total cost in retrievals of the initial system is equivalent to the UgPS. Many existing CBR systems
C,,Ro. After the system has learned a set of control rules, have such a last-resort method (e.g., KOTON 1989.
it has the capacity to guide its search. The number of KOLODNER & SIMPSON 1988).
states searched is reduced to Cp', where C,,' < C,,. How- A CBR system that resorts to null-case adaptation be-
ever, in addition to retrieving a set of operators, it also ginning with no experiences must still incur the cost of
needs to retrieve control rules at each step; thus, the cost retrieving the null case (Rc) and then search the space of
for solving a problem rises to Cp'(R0 +Rc). problem paths until the case has been adapted into a sat-

The expected savings that guided problem solving isfactory solution. Under our earlier assumptions, the
brings are the costs of the states that the problem solver total number of paths the system examines is Cp,, and one
avoids: (Cp - CpIRo,. The added costs are the costs of adaptation retrieval (Ra) occurs per step. Thus, the total
matching the control rules at each step: Cp'(R,' - R,,) = cost of case adaptation before learning is R, + CpR,.
Cp'ARC. (Note: because R, = 0, AR, = Re'). The utility After the system has learned a library of cases, it will
problem will arise when the added costs exceed the ex- still need to retrieve a case but each case will require
pected savings. Thus, the threshold condition is (CJ, - much less adaptation, reducing the number of paths ex-
Cp)R,, < Cp'ARc; in other words, the swamping utility amined to Cp' where C,' << Cp. The cost of retrieving
problem arises when the added cost of retrieval out- cases will increase to R,' where R,.' >R,. Thus, the total
weighs the benefits of individual rules. But will this costs are Re'+ Cp'Ra.
threshold condition ever be met? To evaluate these results we must again examine the

In the limit, the maximum search reduction is to a benefits and costs of case retrieval. The expected savings
single path (C.' = d), and operator retrieval costs are are the costs of the states that the problem solker avoids:
constant (R,,' = R,,) since the library of operators the (Cp - Co' Ra, while the added costs are the increased
system uses does not change in size. The maximnum ex- costs of retrieval of cases R,' - R, = ARC. In the limit.
pected savings possible for any problem are thus (C. - the cost of retrieval increases without bound as the case
d)R,,. In contrast, the cost of retrieving control rules (R, ý library increases in size: R,' = c(K,). However, as we
increases without bound as the control base K, increases approach the limit the case library contains man% appro-
in size; in the limit, the added costs associated with a priate cases and little adaptation needs to be done--
rulebase are dR,' = dc(Kc) and thus can outweigh the perhaps only one or two steps. In general, whenever the
maximum possible savings. Therefore, the threshold threshold condition (Cp - Cr' Ra < AR, is met. the cost
conditions can be met and the CRL system wkill encoun- of retrieval outweighs the benefits of case adaptation:
ter the utility problem. under these conditions, CBR systems will be swamped.

These results indicate that swamping is a function of 5.3. Advantages of Case-Based Reasoning
the potential speedup of learned items, the cost function
of retrieval (which is itself dependent on retrieval While this analysis reveals that both control-rule learners
strategies and machine architecture), and the number of and CBR systems can suffer from the swamping utility
items a system needs to learn. If the system converges on problem, it also reveals that CBR systems have impor-
a bounded set of learned items and the hardware slow- tant advantages over CRL systems.
down never approaches the utility of those items, the The primary advantage CBR systems have over con-
system will never be swamped.4 If the learned items are trol-rule problem solvers is that cases are retrieved only
of low utility, or if the learner never converges on a once during the lifetime of problem solving. For a con-
bounded set, as might be the case for an open-vorld or trol rule problem solver to avoid swamping, the increase

in cost of retrieval of a control rule must be less than the
fraction of total states that the system avoids in guided
problem solving times the cost of an operator: AR, <

' For example, on a parallel machine with a logarithmic u,.i function R,(Cp - Cp,)lC,'. For a CBR system, on the other hand.
Ri = c(Iog Ki), the threshold condition (Cp-Cp)R < (<,C Ilog K,) may the increase in cost of a case retrieval must be less than
never be met in a closed-world domain in which a small wti 4f knowledge
items learned by rote are adequate for performance. If the learmng system the cost of the number of adaptation steps avoided: AR,
successfully converges on a small enough set. the Ioganthmic %lowdown < R,(Cp - C.'). The missing Cp' term in the denominator
will be negligible compared to the potential svings Thij, condition can of the CBR equation arises because the increased cost of
arise on serial architectures as well, but because the cost function is linear retrieval of control rules are incurred at each step in the
in the size of the knowledge base the constraints on the im: of the learned search space, whereas the increased cost of case retrieval
set are much more severe.



is incurred only once during problem solving for a CBR systems with very large case libraries. However. reports
system. In other words, CBR systems amortize the cost of the speedup provided by cases (e.g., KOTON 1989) and
of case retrieval across all adaptations. making them control rules (e.g.. TAMBE ET AL 1990) suggest that cases
much more resistant to increases in retrieval costs than can provide large improvements, up to an order of
CRL systems. magnitude greater than the speedups provided by control

• This amortization also makes CBR more amenable to rules. It is possible that the utility of cases may be high
solutions to the swamping problem, such as deletion enough to allow CBR to avoid swamping, but it is not
policies or indexing schemes. In order to be effective, clear whether this will always be the case.
any coping strategy needs to reduce retrieval time to the 6 The Bottom Line
point that the threshold conditions are never satisfied.
For CRL systems, this upper limit is R,' < Ro(Cp - CBR's patterns of retrieval make it resistant to the utility
Cp')Cp'; for CBR systems, this upper limit is Rc' < problem. Because the cost of case retrieval is amortized

Ra(Cp - C,,'), a much higher (and hence much less strin- over many adaptation steps, ideal CBR systems suffer
gent) limit on the maximum time retrieval can take for a less severely from the same overhead and are more ame-
system to be guaranteed to avoid swamping. nable to coping strategies than CRL systems. This

analysis suggests several future lines of comparative re-
5.4. Future Comparative Analysis search on CBR and CRL, such as operator costs, degree

The above analysis does not close the book on the utility of search reduction and size of knowledge bases.
problem in CBR and CRL systems. There are a number References
of other differences that can contribute to the utility
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Abstract to begin to outline a declarative representation of mental

This paper focusses upon the level of granularity at which rep- activity. The goal is to explicitly represent the mental world
resentations for the mental world should be placed. That is. if that reasons about the physical world, just as past research
one wishes to represent thinking about the self, about the states has explicitly represented the physical world itself. Thus,
and processes of reasoning, at what level of detail should one instead of representing states and events in the physical
attempt to declaratively capture the contents of thought? Some world, this paper discusses how and at what grain level one
claim that a mere set of two mental primitives are sufficient to should represent mental states and mental events.
represent the utterances of humans concerning verbs of
thought such as "I forgot her name." Alternatively, many in the A large number of terms exist in the English language that
artificial intelligence community have built systems that concern mental activity. Although I do not wish to equate
record elaborate traces of reasoning, keep track of knowledge surface features of a language utterance with process or
dependencies or inference, or encode much metaknowledge states that may or may not lie behind a given utterance. a
concerning the structure of internal rules and defaults. The number of English expressions point to interestinC problems
position here is that the overhead involved with a complete for d Ecatie rexprese ions. or th paperest i h tob
trace of mental behavior and knowledge structures is intracta- for declarative representations. For this paper I wish to
ble and does not reflect a reasonable capacity as possessed by examine a few "cognitively pure" terms that generally refer
humans. Rather, a system should be able instead to capture only to the internal world of the reasoner, rather than the
enough details to represent a common set of reasoning fail- external world of physical objects and other people.- This
ures. I represent a number of examples with such a lexel of paper will also ignore non-cognitive mental states such as
granularity and describe what such representations offer an
intelligent system. This capacity will enable a system to reason emotions (affect. e.g. fear and love). Rather. it will tocus on
about itself so as to learn from its reasoning failures, changing more simple concepts such as think, forget. and imagine.
its background knowledge to avoid repetition of the failure. although humans are likely to think thoughts about the exter-
Two primitives are not sufficient for this task. nal world. forget to perform actions in the world, and imag-

ine what the physical world may be like. With such
Introduction constraints, the hope is to partially insulate the task b\ avoid-

ing consideration of the more complex terms that intertwine
An early tenet of artificial intelligence is that reasoning the internal and external worlds, and instead, attempt to

about the world is facilitated by declarative knoA ledge struc- sketch an ontology of mental representations and a \ocabu-
tures that represent salient aspects of the world. An intelli- lary of the content of such representations.
gent system can better understand and operate in such a Many cognitive vocabularies make a prominent distinc-
represented world as opposed to one in which kno% ledge is tion between mental states (as knowledge or beliefl and
encoded procedurally or implicitly. The system ma.• inspect mental mechanisms (as the mental events that process
and manipulate such structures, the system can he more eas- knowledge or information). For example. Conceptual
ily modified and maintained (by either its programmer or Dependency (CD) theory (Schank, 1975) distinguishes
itself), and such representations provide computational uni- between two sets of representations: primitive mental ACTs
formity.' Furthermore, if a system is to reason al'ut itself, and mental CONCEPTUALIZATIONs upon which the
the above tenet can be applied to representation', , iits o•,n ACTs operate. In addition, the theory proposes a number of
reasoning and knowledge. The aim of this paper. therefore. is causal links that connect members of one set with members

of the other. With such building blocks, a representational
I. Proponents of procedural representations have argued against language such as CD must be able to represent many process

these points and countered with advantages of their own See
Winograd (1975/1985). especially his argument thai second- 2. Certainly the boundary between the two worlds is not a \cr.
order knowledge is easier to represent procedurally See Stein & clean line. Terms such as "speak" concern the manipulation of
Barmden tthis volume) for arguments in favor of the prc~edural mental terms te.g.. concepts), but complicate the representation
representation of some knowledge via mental simulation or pro. with details of expression, translation, interpretation and the
jection of hypothetical events, physical means of conveyance.



terms: think(about), remember. infer, realize and calculate. are often subdivided by function into mental events that
and numerous state terms: fact. belief, guess, doubt, and dis- involve memory and transfer of information and those that
belief. This paper will refer to the execution of any mental involve computation or inference. Inferential processes are
process (or arbitrarily long string of processes) by the usually associated with logical or hypothetical reasoning.
generic term "cognize," 3 and to a CONCEPTUALIZATION Example terms include hypothesize, speculate, deduce. cor-
simply by the term "state." See Figure I for a preliminary roborate, and postulate. However, our desired vocabulary
sketch of a target ontological vocabulary for mental repre- includes additional terms that receive little attention in the
sentations. If a reasoner is to understand its own reasoning artificial intelligence community. In Figure 1, inferential pro-
and mental conditions in any substantial level of detail, it cesses are subdivided into those that are driven by a deliberate
will require a semantic hierarchy containing representations goal for processing (Calculate) ,and those in which belief is
for most of these cognitive terms. either more incidental or less exact (Realize).

In addition to the state-process dichotomy, process terms Until recently, examples of memory processes such as
remember, remind, recall, recognize, and forget (but here. the

3. The general term "to think" is an unfortunately overloaded term. lack of an event) have been largely unexamined and without
It can be used in the sense of "to think about" (and thus refers to explicit representation. Especially in the context of case-
a generic mental process) or "I think so." (refers to some qualita- based reasoning or any problem solving that depends on
tive level of confidence). Therefore. cognize is a less ambiguous
representational label, indexed memory hierarchies to support a performance task.

SMental World•

SProcesses • f States '

(Cognize) lie C CONCEPTUALIZATIONuSl

Figure P. Preliminary partial ontology of mental terms
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understanding the operation of memory can be of benefit man, Rieger & Riesbeck (1972) in order to specify the repre-
when learning (see also Leake, this volume, Fox & Leake, sentations for all verbs of thought in support of natural
this volume; and Kennedy, this volume, for additional argu- language understanding. They wish to represent what people
ments in favor of this position). A system that is to adjust the say about the mental world, rather than represent all facets of
organization of memory will have a better chance of success a complex memory and reasoning model. They therefore use
if it has knowledge of the function and operation of the (cog- only two mental ACTS, MTRANS (mental transfer of infor-
nitive) device it is changing. Therefore, for a system to mation from one location to another) and MBUILD (mental
understand and change its own memory effectively, it is building of conceptualizations), and a few support structures
important that the system to be able to represent the memory such as MLOC (mental locations. e.g., Working Memory.
processes explicitly. Central Processor and Long Term Memory). 4

As a consequence, the representation by Schank et al. of
Representing Forgetting: An example forgetting is as depicted in Figure 2. John does not mentally

transfer a copy of the mental object, M, from the recipient
In order to use representations of mental terms effectively, a case of John's Long Term Memory to his Central Processor.
system should consider the structure of the representation, Such a representation does provide more structure than the
rather than simply how a system can syntactically manipu- predicate forms above, and it supports inference (e.g.. if M
late representations or make sound inferences from them. was an intention to do some action, as opposed to a proposi-
For instance, it is not very useful to simply possess a predi- tion, then the result of such an act was not obtained: Schank.
cate such as "forget" or "remember" when trying to under- 1975, p. 60), but the CD formalism cannot distinguish
stand memory failure. between the case during which John forgot due to M not

Forget (John, M) being in his long-term memory and a case of forgetting due
SRemember (John, M to missing associations between cues in the environment and

the indexes with which M was encoded in memory It does
Because the predicates involve memory, it may be helpful not provide enough information to learn from the experi-

to posit the existence of two contrasting sets of axioms: the ence.
background knowledge (BK) of the agent, P. and the fore-
ground knowledge (FK) representing the currently conscious
or active axioms of the agent. Then, the interpretation of for-
get becomes o (John0

Forget (P, M) -4 3M. (M E BKp) A (M e FK p) John 4 M TRANS -- M-(

But to add this interpretation is to add content to the repre- John
sentation. rather than simply semantics. It is part of the meta-
physical interpretation (McCarthy & Hayes. 1969) of the Figure 2. CD representation of forgetting
representation that determines an ontological category (i.e., o-mental object or conceptualization. R=Recipient. CP=Central
what ought to be represented), and it begins to provide epis- Processor: LTM=Long Term N.emorn.

temological commitments (e.g., that the sets BK and FK are
necessary representational distinctions). However. meaning Cox (1994) and Cox and Ram (1992b) pose an alternati'e
is not only correspondences with the world to be repre- representation for such mental phenomena using Explana-
sented, but meaning is also determined by the inferences a tion Pattern (XP) theory (Leake, 1992: Ram, 1991: Schank.
system can draw from a representation (Schank. 1975). The 1986; Schank, Kass, & Riesbeck, 1994). The Meta-XP struc-
forget predicate does little in this regard. Moreover, these ture of Figure 25 represents a memory retrieval attempt
predicates will not assist a reasoning system to understand enabled by goal. G. and cues. C. that tried to retrieve some
what happens when it forgets some memory item, M. nor memory object. M, given an index. I. that did not result in an
will they help the system learn to avoid forgetting the item in expectation (or interpretation). E. that should have been
the future. Finally, the representation of a mental event equal to some actual item, A. The fact that E is out of the set
which did not actually occur is not well captured by a simple of beliefs with respect to the reasoner's foreground knowl-
negation of a predicate representing an event which did
occur (Cox & Ram. 1992b), thus -n Remember (John. M) is 4. Schank et al. (1972) actually referred to Working Memory as
essentially a vacuous proposition. This is not to say that Immediate Memory and the Central Processor as a Conceptual
logic cannot represent such a mental "non-event." rather. I Processor. I have used some license to keep terms in a contem-
simply wish to illustrate that it is not an elementary task to porary language. Moreover. Schank et al. used a third primitive
construct an adequate representation for forgetting and that a ACT, CONC. which was to conceptualize or think about wk ithout

single logical predicate will not suffice. building a new conceptualization, but Schank l1975) dropped it.
An alternative approach was undertaken by Schank. Gold- For the purposes of this paper. howexer, the differences do not

matter.
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edge (FK), that is, is not present in working memory, ini- However, complete representations for all inferences and
tiates the knowledge that a retrieval failure had occurred. memory processes, along with a complete enumeration of all

knowledge dependencies, are not required for many learning
tasks. People certainly cannot maintain a complete and con-

M sistent knowledge base. neither are they able to perform full
A dependency-directed backtracking (Stallman & Sussman,

1977) or reason maintenance (Doyle, 1979) for belief revi-
__G C sion: rather. they depend on failures of reasoning and mem-

A ory of past errors to indicate where inconsistencies in their
knowledge lie. That is, as knowledge is locally updated. a

New RMrl ,, knowledge base will often become globally inconsistent andSRrpartially obsolete. It is at the point in which a system (either"",- " , human or machine) attempts to reuse obsolete information4that inconsistency becomes most apparent and further learn-
A 3,'" ing is enabled.7 People often do know when they err if their

A Out. E conclusions contradict known facts, if plans go wrong. or if
Retrieval Athey forget (even if they cannot remember the forgotten
Failure .item). Representations should support such types of self-

"knowledge, and it is at this level of granularity that an episte-
" .... mologically adequate (McCarthy & Hayes. 1969) content

theory of mental representations can be built.
Figure 3. Meta-XP representation of forgetting

A=actual. E=expected: G=goaL C=cues. M=memor iterm. j=memorN Representing Reasoning Failure to Support
index Learning

This representation captures an entire class of memoryfaiures:pfailuresduention captmissiang inde ailre duafeto So as to support learning. a theory should ha% e a level of rep-failures: failure due to a missing index, 1: failure due to a

missing object. M: failure because of a missing retrieval resentation that reflects the structure and content of reason-
goal. G;6 or failure due to not attending to the proper cues. C. ing failures. Cox & Ram (1994) extend the scope of
in the environment. Such a representation allows the system reasoning failure to include the following forms. A failure is
to reason about these various causes of forgetting: it can defined as an outcome other than what is expected (or a lack
inspect the structural representation for a memory failure and of some outcome). If a system incorrectl\ analyzes some
therefore analyze the reasons for the memory failure. Such put. or solves some problem incorrectly, so that its
an ability facilitates learning because it allows a learner to expected solution differs from the actual solution given some

e tcriteria or feedback. then a failure has occurred. This is theexplain the reasoning failure and use the result in determin- covnialotnofaluendwlbeerdacnr.
ing what needs to be learned to avoid the failure in the future conventional notion of failure and will be termed a contra-
(Ram & Cox. 1994). diction. Moreover, if a system expects that it will not be able

to compute any answer or the correct answer. but it does
5. Meta-XPs are essentially directed graphs with nodes being either nonetheless, then another failure class exists called an unex-

states or processes and enables links connecting states with the pected success. An impasse is defined as either a failure of a
processes for which they are preconditions, result% links con- process to produce any result or the condition under which
necting a process with a result, and initiate links connecting two no process is available to attempt a result. Alternativelv. if a
states. Numbers on the links indicate relative temrxlral sequence. system has no expectation, yet an event occurs which should
Attributes and relations are represented explicitly in these have been expected, then a surprise exists. This paper pre-
graphs. Thus. the ACTOR attribute of an e\ent X with some sents a declarative representation for each of these four
value Y is equivalent to the relation ACTOR haing doma in X
and co-domain Y. See Cox & Ram (1992a. 199hb aind Ram clseofranigalu.&nd co Y. See Cox( further r Re al det92ail 1492andRa The basic organization for all of these representations is at& Cox (1994) for further representational details

6. The agent never attempted to remember. For instance, the rca- the level of a comparison between an expectation and some
soner may have wanted to ask a question after a lecture was feedback (either from the environment or additional infer-
complete, but failed to do so because he never generated a goal ence or memory).8 Oehlmann et al. (in press) stress the
to remember once the lecture was complete. Alternatively the importance of metacognitive processing to provide expecta-
agent may know at the end of the lecture that he needs to ask tions and to monitor comprehension. both in human and
something, but cannot remember what it was. This second exam.
ple is the case of a missing index. Note that both a missing index 7. See also McRoy (1993) for related discussion of resource con-
and an incorrect index may be present at the same time. In such straints on inference, the problems of logical inconsistency and
cases, a target item is not retrieved, whereas an interfering item logical omniscience, and the proposed relationship of these
is retrieved instead. problems to the agent's own involvement in introspection.
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machine systems. The representations used by any system Table 1: Structural differences between remembering events

should support these processes. Although this paper focusses
on representation, see Cox & Ram (in press) and Ram & Cox Memory Structural Description
(1994) for their application in an implemented computa- Term Features
tional system.

Before I examine the representation for reasoning failures, Reminding Has only Cues: Incidental: No
it is worth noting that the basic representation can account
for many of the process terms from Figure 1, not just classes Recall Cues and Goal: Deliberate: Has
of failure. In Figure 4 for example, if the value of the cog- E before A Knowledge Goal
nize node that produces an expectation, E, is a memory pro-
cess. the representation can easily capture the distinctions Recognition May or may not Borderline between 2
between an incidental reminding, a deliberate recall, and rec- have Goal; above; Has judgement
ognition: that is, the three subnodes of "remember" in Figure A before E
1. The structural differences depend on the nodes C and G,

and the temporal order of the causal links resulting in nodes Contradiction
E and A (see Table I). If there is no knowledge goal (Ram,
1991; Ram & Cox, 1994: Ram & Hunter, 1992) to retrieve Figure 5 illustrates the representation for a contradiction fail-

some memory item, only cues in the environment, and if E is ure. Some goal, G, and context or cues, C. enables some con-
retrieved before A is produced, then the structure is a nitive process to produce an expected outcome. E. A
reminding. On the other hand, if there is a deliberate attempt subsequent cognitive mechanism produces an actual out-
to a memory item that is later compared to some feedback. come, A, which when compared to E. fails to meet the
A. then the structure represents recall. Finally, if A is pre- expectation. This inequality of actual outcome vith expected
sented followed by a memory probe. then the structure repre- outcome initiates the knowledge of contradiction If the cog-
sents recognition. whether or not a retrieval goal exists. It is nitive mechanism was some inferential process. then the fail-
also significant to note that memory "elaboration" of Figure ure becomes an expectation failure and the node C represents
Ican be represented as a feedback loop from E to C such that the context, whereas if the process \%as a memor. function.

each new item retrieved adds to the context that enables fur- the contradiction is called an incorporation failure and C rep-
ther memory retrieval. 9  resents memory cues.10

G C G C

Compare Comparearg2 atgr a rg2 ag

Cognize ]ema Memory Cognize 4 Cognize
Retrieval 3uft's"

Me~aNtlyI MmeA.I e~ly
Res•s / Zi Results

\ kll. ,•= Aý4 -- /I s.....
A E - A C.CE A E

p, A Expectation or A
Success Incorporation

co.domaM If V • -o,.,am If Failure

Actual dOm"m donru Actual dome. oo~ma Ex•"ec
Outcome Outcome outcome Outcome

Figure 4. Meta-XP representation of various Figure 5. Meta-XP representation of contradiction
remembering events A=actual: E=expected; G=goal: C=context orcue,

A=actual: E=expected: G=goal: C=context or cues

8. See Krulwich (this volume) for another view on basic level cate- 10. Cox & Ram (1992a) identified four base Meta-XP representa-
gories for mental representations. Instead of grain level, how- tions for failure. Two errors of commision are expectition fail-
ever. his discussion centers on the proper level of abstraction. ure and incorporation failure, whereas two errors of omi,,ion are

9. This characterization is admittedly simplified since cue elabora- retrieval failure and belated prediction. This paper "ill add ihe
tion incorporates top-down inferential processes as well as bot- base omission-type representation constructiontitithir" io this list
tom-up additions to memory cues. later in this section.
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An incorporation failure occurs when an input concept cess reveals that some expectation was never generated. The
does not meet a conceptual category. For example, an agent explanation is that there was never a goal. G2. to create the
may be told that a deceased individual came back to life expectation, either through remembering or inferring. Some
(which is false) or a novice student may have a conceptual earlier process with goal, GI, failed to generate the subse-
memory-failure when told that the infinite series .999§ is quent goal. When the node A is generated, however, the sys-
equivalent to 1.0 (which is true). These examples contradict tem realizes that it is missing. This error, by definition, is a
the agent's concept of mortal and the naive concept of num- missing expectation discovered after the fact.
bers respectively. Both inferential expectation failure and G C
incorporation failure are errors of commission. Some
explicit expectation was violated by later processing or
input.

Cognize Cognize

Unexpected 
success

m . 131 .....
Figure 6 contains a Meta-XP representation of an unex- P..u R-0.
pected success, a failure similar to contradiction. However.
instead of E being violated by A, the expectation is that the . A-
violation will occur, yet does not. That is, the agent expects > A _E

not to be able to perform some computation (e.g.. create a k Expectation A

solution to a given problem), yet succeeds nonetheless. In Failure

such cases the right-most "cognize" term will be some infer- ...... -.
ential process. If this process is a memory term instead, the Actul -" ' . . ,

failure represents an agent that does not expect to be able to
remember some fact on a given memory test, vet at test time '
or upon further mental elaboration of the cues, the agent
remembers it. See for example. the experimental studies of -

feelings-of-knowing, i.e., judgements of future recognition 4
of an item that was not recalled during some memory test 1 .
(e.g.. Krinsky & Nelson, 1985) and judgements-of-learning. 'o Compare
i.e, judgements at rehearsal time as to future memory perfor-
mance (e.g.. Nelson & Dunlosky. 1991). Like the representa-
tion of contradiction, the agent expects one outcome Figure 6. Meta-XP representation of unexpected
(failure). yet another occurs (success) during unexpected success
successes. A=actual. E=expected. G=goal. C=context or cue,

Impasse

Figure 7 represents a class of omission failures that include G., C

forgetting as discussed earlier. If the right-most "cognize'" ..
term is a memory retrieval process. then the Meta-XP indeed
represents forgetting." The impasse is a memorN process Cognize Cognize
that fails to retrieve anything. If the node is an inferential -

process. however, then the impasse failure is equimalent to
the failures as recognized by Soar (Newell. 1990) --a R.m'S' \4 Truth .
blocked attempt to generate the solution to a goal Thus a ,
construction failure is when no plan or solution is con- fr 11 3 -4

structed by the inference process. In either case. the node Ei A Out, E
is not in the set of beliefs with respect to the foreground Retrieval or A
knowledge of the system (i.e.. was not brought into or cre- Construction
ated within working memory). Failure

Actual ftma OOMV Ex! tedle

Surprise o-tco,,* oto,

Finally, Figure 8 represents a class of failures rarely treated
in any Al system. A surprise occurs when a hindsight pro- Figure 7. Meta-XP representation of impasse

A=aclual. E=expected. G=goal. C=context or cue,

11. Compare Fig. 7 with Fig. 4 to see why Forgetting* -Remcmerimr
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A Call for Representation expects Bill to become a doctor" (Schank et al.. 1972. p.
29) is shown in Figure 9. Very little information is pro-

These few examples demonstrate the usefulness of rep- vided in this structure, and few inferences may be
resenting mental events and states as well as its com- obtained from it or learning performed from it.
plexity. Although difficult to formulate a complete
representation of mental events, the effort promises to Bill
aid a system when reasoning about itself or other agents,
especially when trying to explain why its own or f MLOC (LTM (John))
another's reasoning goes astray. Furthermore, even
though the CD representation of mental terms leaves Doctor
much detail unrepresented, the original goal of Schank
et al. (1972) to represent the mental domain is a fruitful Figure 9. CD representation of expectation
one. If a representational vocabulary can be fully speci- f=futurc tense: MLOC=Mental Location: LTM=Long Term Memor'

fled, then these domain independent terms can help
many different intelligent systems reason in complex For the above reasons I argue that two primitives are
situations where errors occur. not sufficient to comprise an adequate representational

G1 c system that can express states and mechanisms of the
mental world. Rather, a comprehensive representation
needs to be delivered that can be shared between exist-

Cognize ing formalisms, and where the reuse of representations
facilitate both uniformity and transfer across domains in
order to support intelligent reasoning, understanding
and learning. In support of these goals. I list a number of

G2 concepts. dimensions and remaining issues that must be
considered in their pursuit:

Cognize Cognize I. introspect, retrospect, inspect, reflect, suspect.
expect.

.2. expect versus hope versus wish - depend, on
A- : .. knowledge or certainty, that is. one max expect

A something when confident. but hope for an outcome
3 -Successtul when doubting. and finally wish for something that

Prediction

is least likely to occur. I suppose we pray for the
. impossible; which leads this list to item 3.

43. wishful thinking (in the face of conflicting eui-

Hindsight 4 Truh dence along with rigid beliefs).
"s J]',l 4. suspend thinking, resume thinking (both opportu-

nistic), reconsider (in the light of hindsight, rather
Belated than after an interruption usually).

Prediction
5. suspend belief. (day)dream. imagine, wonder.

Figure 8. Meta-XP representation of surprise See Schank et al. (1972) p. 18, for a crude represen-

A=actual: E=expected; GI.G2=goals: C=contcx or cues tation of wonder; p. 30 for imagine).
6. apprehension, perception, precept. percept.

Although many of the details of this preliminary pro-

posal may be overly simplified, it remains an improve- 7. foresee (foresight), review (hindsight). intuit
ment over some of the representational %ystems (insight).
proposed in the past such as CD theory. Especially con- Under foresight: foretell, apprehension. wish.
sidering the emphasis by Schank et al. on expectation as hope, and expect.
a driving force in text comprehension and problem solv-
ing. the CD representation for the concept of "expecta- Under hindsight: review. retrospect. remember.

tion" is not sufficient to express its central role in reconsider. reflect.

cognition. For example, the CD representation for "John Under insight: premonition, presentiment. appre-
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hension, hunch, discovery, prescience. input bias. In Proceedings of the Sixteenth Annual Confer-
ence of the Cognitive Science Society (pp. 231-236). Hills-

8. algorithmic versus heuristic processing (e.g., projec- dale NJ: Lawrence Erlbaum Associates.

tive reasoning via possible worlds given different

assumptions (logic) versus given different interpreta- Doyle, J. (1979). A Truth Maintenance System, Artificial

tions (analogy or metaphor). Intelligence, Vol. 12, pp. 231-272.
Fox, S., & Leake. D. (1995). Modeling case-based planning

9. group (categorize), compare, contrast, analogize, for repairing reasoning failures. In M. T. Cox & M. Freed

10. want, need, desire, goal possession (all items equiva- (Eds.), Proceedings of the 1995 AAAI Spring Symposium

lent). on Representing Mental States and Mechanisms. Menlo
Park, CA: AAAI Press.

!I. rehearse, elaborate, search; baffled, stumped, per- Kennedy, A. C. (1995). Using a domain-independent intro-
plexed. spection mechanism to improve memory search. In M. T.

12. notice, observe, surveil (search), discover, await Cox & M. Freed (Eds.), Proceedings of the 1995 AAAI

(depends on target or expectation; another scale by Spring Symposium on Representing Mental States and

deliberation and knowledge explicitness). Mechanisms. Menlo Park. CA: AAAI Press.
Krinsky, R., & Nelson, T. 0. (1985). The feeling of knowing

13. intend (to do an act) versus goal (to achieve a state). for different types of retrieval failure. Acta Psychologica.
14. intend, attend. pretend, suspend, portend, compre- 58, 141-158.

hend (understand). See Schank et al. (1972) pp. 70-75, Krulwich, B. (1995). Cognitive behavior, basic levels, and
for an early discussion illuminating the often incompre- intelligent agents. In M. T. Cox & M. Freed (Eds.). Pro-
hensible mental term of understand ;-) ceedings of the 1995 AAA/ Spring Symposiunz on Repre-

15. (self)explain. senting Mental States and Mechanisms. Menlo Park. CA:
AAAI Press.

Leake, D. (1995). Representing self-kno%%ledge for intro-
spection about memory search. In M. T. Cox & NI. Freed
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MULTI-PLAN RETRIEVAL AND ADAPTATION IN
AN EXPERIENCE-BASED AGENT
Ashwin Ram and Anthony G. Francis, Jr.
College of Computing, Georgia Tech

I. Introduction
The real world has many properties that present challenges for the design of intelligent agents: it is
dynamic, unpredictable, and independent, poses poorly structured problems, and places bounds on
the resources available to agents. Agents that operate in real worlds need a wide range of
capabilities to deal with them: memory, situation analysis, situativity, resource-bounded cognition.
and opportunism. In particular, agents need the ability to dynamically combine past experiences to
cope with new situations, selecting and merging the relevant parts of remindings to take maximum
advantage of their past experience.

To address these issues, we propose a theory of experience-based agency which specifies how\ an
agent with the ability to richly represent and store its experiences could remember those
experiences with a context-sensitive, asynchronous memory, incorporate the relevant portions of
those experiences into its reasoning on demand with integration mechanisms, and direct memorN
and reasoning through the use of a utility-based control mechanism. We have implemented this
theory in the NICOLE multistrategy reasoning system and are currently using it to explore the
problem of merging multiple past planning experiences. NICOLE'S control system allows memory
and reasoning to proceed in parallel; the asynchronous and context-sensitive nature of that
memory system allows NICOLE to return a "best guess" retrieval immediately and then to update
that retrieval whenever new cues become available.

But solving the problem of merging planning experiences requires more than just memory and
control. We need mechanisms to integrate new retrieved plans into the planner's current reasoning
context whenever they are found; to ensure that those new retrieved plans are useful, we need
ways to use the planner's current context to generate new cues that can help guide the memory
system's search. To solve these subproblems, we have developed the Multi-Plan Adaptor (MPA)
algorithm, a novel method for merging partial-order plans in the context of case-based least-
commitment planning. MPA allows the merging of arbitrary numbers of plans at any point during
the adaptation process; it achieves this by dynamically extracting relevant case subparts and
splicing those subparts into partially completed plans. MPA can also help guide retrieval by
extracting intermediate goal statements from partial plans.

In this chapter, we briefly review the properties of the real world that present challenges for the
design of intelligent agents, examining in particular the need to combine past planning
experiences. We then review our theory of experience-based agency and its- implementation in the
NICOLE system. We present the MPA algorithm, illustrate how it supports the merging of plans at
any point during the adaptation process, and describe its foundations in least-commitment case-
based planning. We then discuss how MPA can be integrated into various control regimes.



including systematic, pure case-based, and interleaved regimes, and describe our implementation
of interleaved MPA in NICOLE. We conclude the paper by reviewing other case-based planning
work and then outlining our contributions.

2. Exploiting the Past
2.1. The Challenges of the Real World

The real world presents many challenges to an agent, challenges which arise in both artificial
domains and in the real-world problems humans face (Bratman, 1987; Hammond, 1989; Orasanu
& Connolly, 1993; Pollock, 1995; Sternberg, 1985, 1986; Wooldridge & Jennings, 1995). The
real world is dynamic, changing independently from the actions of an agent, and it is
unpredictable, changing in a way too complex for an agent to completely predict. To make things
worse, the world and its changes are relevant to the agent's goals (so that they cannot be
ignored), sensitive to the agent's actions (so that the agent cannot act with impunity) and place
resource bounds on the agent's activity (so that the agent cannot just try everything until it
works).

But the real world is also regular: patterns exist, encapsulating classes of objects and events and
relationships of cause and effect. An agent's ability to effectively use its past experience with
these patterns can be key to its successful performance and survival in real-world domains. In this
chapter, we take as a given the traditional trappings of a sophisticated intelligent agent. which
include sensors and effectors (Russel & Norvig 1995), desires (or values) and goals (Bratman.
1987; Pollock, 1995; Schank and Abelson, 1977), situation analysis (Kolodner, 1993: Pollock.
1995), context sensitivitv or situativitv (Maes, 1990), efficient resource-bounded cognitin
(Kolodner, 1983; Pollock, 1995), and opportunism (Hammond 1989; Hayes-Roth & Haves-Roth.
1979; Simina & Kolodner, 1995). In this context, we will focus on an agent's memory for past
experiences and how relevant pieces of multiple past experiences can be effectively integrated
during problem solving in order to synthesize solutions for new problems.

22. The Need to Combine Experiences

Taking advantage of past experiences is the foundation of case-based reasoning. When confronted
with a problem, a case-based reasoner recalls a past experience and adapts it to provide the
solution to the new problem. Unfortunately, in many real-world domains we cannot count on a
single past experience to provide the outline of a solution to our problems. For example:

* A graduate student asked to present his first paper at an overseas
conference must draw on separate past experiences in preparing talks for
conferences within his country and preparing his passport and flight
arrangements for vacations outside of his country.

A host planning his first large dinner party must recall both the outline of a
menu as served at family gatherings and his separate experiences at
preparing individual dishes for himself.

A home hobbyist attempting his first large piece of furniture must recall
both past examples of that type of furniture to provide a design and



experiences with acquiring, assembling and finishing individual
components.*

All of these problems have something in common: every piece of the solution can be constructed
entirely out of the agent's past experience (with suitable adaptation), but no single past
experience suffices to solve the entire problem. For these types of problems, unless a case-based
reasoning system has the ability to combine several past experiences, it will have to resort to
expensive from-scratch reasoning in order to solve the problem.

Some CBR planning systems combine multiple cases during reasoning. However, they either
gather all partial plans at retrieval prior to adaptation (e.g., PRODIGY/ANALOGY, Veloso 1994:
Chapter 8, this volume), break plans into snippets at storage time so they can be retrieved
individually (e.g., CELIA, Redmond 1990, 1992), or combine cases recursively, applying
complete past cases to sub-problems within a larger problem (e.g., ROUTER, Goel et al., 1994:
SBR, Turner, 1989; PRODIGY/ANALOGY, Veloso, 1994; Chapter 8, this volume). None of
these approaches is entirely satisfactory, for various reasons.

It is not entirely clear that all of the knowledge needed to solve a problem can be assembled at the
beginning of problem solving. For example, in the furniture example, it is not entirely clear
whether or not the agent needs to buy new sandpaper, and hence unclear whether the agent
should recall past experiences of buying sandpaper at a hardware store. This uncertainty arises out
of several concerns: the uncertainty of the world state (how much sandpaper does the a2ent
have?), uncertainty in the effectiveness of agent actions (how much wood will a piece of
sandpaper sand?) and the potential of exogenous events that can invalidate parts of the plan (if a
friend drops and scars a piece of the furniture, will the agent have enough sandpaper to remove
the scar, or will he need to buy more?). But it can also arise out of the plan itself: until the agent
has decided on a design for the piece and how much wood will be involved, it is unclear precisely
how much sandpaper is needed, and hence unclear whether or not a plan should be retrieved. If
some amount of sandpaper is on hand, the goal of acquiring sandpaper may not even arise until
late in the planning process, when it has become clear that the amount on hand is insufficient.

Precomputing case snippets also has drawbacks. While this allows us to extract subparts of a case
to meet the needs of an open goal in a plan, these subparts need to be computed at storage time.
Unfortunately, it is not clear that every useful breakdown of a case can be computed in advance.
For example, in the foreign conference example, the two past experiences must be cloelv
interleaved to produce a new plan. If the agent has not stored the passport experience as a
separate snippet, the agent may not be able to extract that particular piece of a case if it is
retrieved - if the agent was able to retrieve it at all.

Recursive case-based reasoning - using case-based reasoning to satisfy subgoals in a partial plan
- is an effective way to combine multiple cases because information about the partially
constructed solution can be used to help. select additional cases to complete the solution.
However, existing systems that use recursive case-based reasoning, such as ROUTER and
PRODIGY/ANALOGY, can only retrieve whole cases and attempt to apply them to the
subproblems at hand; these systems tend to fill in one 'gap' at a time and neither search for nor
attempt to use cases that might fill several gaps in the plan at once, even if such cases exist.

We advocate a more flexible approach: using more complete information about the current state
of a partially adapted plan to guide the retrieval of cases which address as many deficiencies in the
plan as possible, and dynamically selecting the relevant portions of those cases to integrate with
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Figure 1. The Architecture of NICOLE.

our current reasoning process. We believe that the key to achieving this is not to attempt to solve
this problem in isolation, but instead to look at how the design of a complete agent could provide
us with the tools with which to solve the problem.

3. An Architecture for Real-World Domains
3.1. Experience-Based Agencul

A growing community of Al researchers has come to believe that successfully meeting the
challenges posed by the real world will require building comprehensive agent architectures, rather
than by tackling individual problems separately and trying to combine the solutions after the fact
(e.g., Anderson, 1983; Hayes-Roth, 1995; Newell, 1990; Nilsson, 1995; Pollock. 1995). We
subscribe to this view; in particular, we believe that the problem of deciding when and what cases
to retrieve and how to integrate those cases into the system's current plans can only be solved in
the context of the retrieval and reasoning needs of an entire agent functioning in a real-world
domain.

To explore this problem, we have developed a theory of experience-based agency, which
specifies a class of agent capable of not only integrating experiences on demand but also retrieving
those experiences in a context-sensitive and asynchronous fashion. The theory has five primary
components. The core components are a richly represented experience store and a global
communications mechanism, which together lay the foundation for a context-sensitive
asychronous memory system. To cope with the potential retrieval of new information at any time,
reasoning mechanisms are equipped with integration mechanisms; to coordinate reasoning and
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memory, the theory proposes a central metacontroller. Figure 1 illustrates our current
implementation of these components in the NICOLE' multistrategy reasoning system.

32 MemorU and Control in an EXperience-Based Agent

An experience-based agent is designed to operate in a dynamic, unpredictable world with limited
information, and as such naturally requires the ability to combine multiple experiences on demand,
clip out their irrelevant subparts, and splice them together into a complete solution for the
problem at hand. Driving this integration of experience is the asynchronous retrieval of relevant
experiences by the independent memory system. In a dynamic world, we cannot guarantee that the
cues and specifications that reasoning provides to memory will be sufficient to allow retrieval of
the best experiences quickly enough to allow retrieval to continue uninterrupted; an experience-
based agent avoids this problem by allowing memory to return a "best guess" initially while
continuing to search memory in parallel with any reasoning, acting, or sensing operations being
performed by the agent. 2 Figure 2 illustrates the "life history" of a typical parallel memory search.

The "rich" knowledge representation used in an experience-based agency system's experience
store (implemented in NICOLE as a highly connected semantic network 3) allows the memory to
make connections between reasoning operations and past cases; the global communications
mechanism (implemented in NICOLE as a set of task-specific blackboards) ensures that the content
of reasoning operations is visible to the memory to make it context-sensitive. In contrast, where
knowledge representation and the global communications mechanism aim to increase memory's
ability to retrieve, the metacontroller limits it: it provides utility metrics which limit when memory
(or other reasoning modules 4) can execute. If no sufficiently suitable retrieval can be found.
metacontrol ensures that the agent spends its time processing the information it already has. rather
than allow the memory to return every partial match, no matter how slight.

33. Reasoning in an Experience-Based Agent

However, while these components are necessary to achieve the desired behavior, they are not
sufficient; modification must be made within reasoning and memory as well. Traditional reasoning
algorithms have well-defined inputs and outputs, and it simply does not make any sense to sav
that "new information can be retrieved at any time" without some integration mechanism that can
incorporate that information into reasoning. Similarly, traditional retrieval algorithms operate at

I NICOLE is named after a sentient computer in a science fiction short story by one of the authors (Francis 1995).

2 Because of its ability to return a best guess. an experience-based agent has many similarities to the interactive
"'shoot-first" case-based reasoning system- advocated by Riesbeck (1993). Given a problem input by the user. a
shoot-first system attempts to quickly retrieve an approximate set of cases and/or propose a sketchy solution, and
then uses feedback from the user to redefine the problem, refine the search, or adapt the solution. Both experience-
based agents and shoot-first systems require similar memory capabilities; however, the primary "user" of an
experience-based agent's quick retrievals is the agent itself.

3 This semantic network is "highly connected" in two senses: both in the network structure (as in Kilmesch. 1994)
and in the semantics of the network, in which all nodes and links are reified concepts (as in Brachman, 1985:
Wilensky, 1986).

4 Reasoning modules are implemented in NICOLE as supertasks (Moorman & Ram, 1994) which combine
characteristics of task-specific blackboard panes (Hayes-Roth & Hayes-Roth, 1979) and extended Reactive Action
Packages (RAPs; Firby, 1989).
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Figure 2. The Life History of a Retrieval in NICOLE.

1. A retrieval begins when a reasoning module calls post-request, which adds a new request-node
(symbolized by a diamond) to the request buffer of the memory blackboard. 2. A request-node ma\ be
updated with a update-request call at any time. 3. Each time a request is posted or updated (or when
activity occurs in other system blackboards) activation spreads to nodes in long term memory (the
experience store). 4. On every retrieval cycle, a limited number of active nodes (symnbolized bN dark
circles) are retrieved to the retrieval buffer for consideration. 5. Each pending request in the reques~t
buffer is matched against the candidates in the retrieval buffer. 6. Successful matches are posted to the
candidate buffer to be copied to the requesting blackboard or process. 7. A retrieval candidate can be
accepted or rejected by the accept-candidate and reject-candidate calls, which update the state of the
request to allow it to more accurately select future matches. 8. The reasoning module may at any time
decide to terminate processing of a request by accepting it through an accept-request call or rejecting it
with a cancel-request call. 9. Terminated requests, both successful and unsuccessful, are stored in long
term memory and used by the storage module (not shown) to adjust associative links in long term
memory and retrieval parameters in the matching and candidate retrieval systems.

the command of the reasoning system, performing each search of memory separately from every
other and basing each search only on the cues and specifications provided at the particular
moment the search was initiated. In order to take maximum advantage of an independent memory
we must allow it to establish knowledge goals which are based on the needs of reasoning but
which can be independently pursued, updated, and (eventually) satisfied.

3.4. lExploiting Past Plans in an Experience-Based Aget
In addition to the general need to combine past experiences into a coherent solution to its current
problems, if an experience-based agent is called upon to perform planning tasks, it needs the
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specific capability to combine multiple plans on demand, clip out their irrelevant subparts, and
splice them together into a complete plan. To solve this problem, we have configured NICOLE to
implement an interactive multi-plan adaptation system (called NICOLE-MPA).

NIcoLE-MPA represents an advance over traditional case-based reasoning systems in two ways.
First, NIcoLE-MPA uses a novel algorithm called the Multi-Plan Adaptor (MPA) to extend the
concept of multi-plan adaptation to the least-commitment case-based planning framework. Within
the context of the NICOLE system, the MPA algorithm also provides both an integration
mechanism and a knowledge goal generation mechanism for least-commitment planners using
partially ordered plans. Second, NIcOLE-MPA provides a framework for the study of various
heuristics for multi-plan adaptation.

To set the stage for NICOLE-MPA, we will discuss the least-commitment planning framework and
its case-based implementation in systems like SPA, then detail the MPA algorithm itself and how
it extends the traditional systems upon which it is founded, Then, we will discuss how NICOLE is
configured to implement interactive multi-plan adaptation, and conclude by discussing the
potential efficiency gains and hazards of NICOLE-MPA.

4. Interactive Multi-Plan Adaptation
4.1. An Overview of Case-Based Least Commitment Planning

Least-commitment planning departs from traditional planning systems by delaying decisions about
step orderings and bindings as much as possible to prevent backtracking (Weld, 1994). Least-
commitment planners solve problems by successive refinement of a partial plan derived from the
initial and goal conditions of the problem. Plans are represented as sets of steps. causal links
between steps, variable bindings and ordering constraints. Beginning with a skeletal partial plan
based on the initial and goal conditions of the problem, a least-commitment planner attempts to
refine the plan by adding steps, links and constraints that eliminate open conditions or resolve
threats.

The Systematic Plan Adaptor algorithm (Hanks & Weld, 1995) is a least-commitment algorithm
for case-based planning. SPA is based on four key ideas: treat adaptation as a refinement process
(based on the generative least-commitment planner SNLP; McAllester & Rosenblitt. 1991).
annotate partial plans with reasons for decisions, add a retraction mechanism to remove
decisions. and add afitting mechanism to fit previous plans to current situations. Reasons support
the fitting and retraction mechanisms by allowing SPA to determine the dependencies between
steps. Once a plan has been retrieved, it may contain steps and constraints that are extraneous or
inconsistent with the new situations, during fitting, reasons allow SPA to identify extraneous steps
and remove them; during adaptation, reasons allow SPA to isolate steps which are candidates for
retraction.

One limitation of SPA is that it is a single-plan adaptor; even if a new problem could be solved by
merging several plans, SPA must chooe only one and adapt it to fit. This limitation arises from
SPA's attempt to maintain systematicit*y and completeness. A systematic planner never repeats its
work by considering a partial plan more than once; a complete planner always finds a solution if it

exists. SPA ensures these properties (in part) by choosing only one refinement at a time, by never
retracting any refinement made during adaptation (to avoid reconsidering plans), and by adding all
possible versions of any refinement it chooses (to avoid missing a solution). A full discussion of
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completeness and systematicity in SPA is beyond the scope of this paper (but see Francis & Ram,
1995; Hanks & Weld, 1995).

42_ Multi-Plan Adaptation

Because it adapts only one plan, SPA can resort to significant amounts of from-scratch planning
even when the knowledge needed to complete the plan is present in the case library. To make the
most effective use of the planner's past experience, we need the ability to recognize when a partial
plan needs to be extended, select plans to that address the deficiency, and then extract and merge
the relevant parts of the retrieved plan into the original plan.

MPA resolves this problem in SPA by allowing the retrieval and merging of arbitrary numbers of
cases at any point during the adaptation process. MPA also allows the dynamic extraction of
relevant parts of past cases. To achieve this, we extended the SPA framework by adding three key
mechanisms:

"* a goal deriver, which extracts intermediate goal statements from partial
plans

"* a plan clipper, which prepares plans for merging using a modified plan
fitting mechanism

"* a plan splicer, which merges two plans together based on their causal
structure

Intermediate goal statements are MPA's knowledge goals; they provide MPA with the ability to
merge partial plans at any point of the adaptation process and contribute to its ability to
dynamically extract the relevant subparts of retrieved cases. Intermediate goal statements are
extracted by the inverse of a representational "trick" that SPA uses to construct a skeletal plan if
it can't find a relevant case in its library. The trick is simple: build a skeletal plan by adding
dummy initial and final steps whose post- and pre-conditions match the initial and goal conditions
of the problem. This technique is also used in SPA's generative predecessor SNLP (McAllester &
Rosenblitt, 1991) as well as a host of other STRIPS-based planning systems. MPA inverts this
trick by extracting new goals from the open conditions of a partial plan. As planning proceeds.
open conditions in the goal statement are resolved, but new open conditions are posted as ne\ý
steps are added. MPA constructs an intermediate goal statement by extracting these new open
conditions and using them to form the new goal state, and by extracting the initial conditions of
the partial plan can be extracted and using them to form the new initial conditions.5

5 Unfortunately, since ordering constraints and binding constraints may be posted to the plan at any time, onI% the
initial conditions can be guaranteed to be valid conditions for the intermediate goal statement. Conditions
established by other steps of the plan may be clobbered by the addition of new steps and new ordering constraints.
However, it might be possible to develop heuristics that select additional initial conditions that are likely to hold.
perhaps in conjunction with more complex retrieval, fitting and splicing algorithms. In general, deciding which
parts of a plan can be extracted to form a sensible and effective intermediate goal statement is a difficult and
unsolved problem.
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Figure 3. Overview of Multi-Plan Adaptation

Multi-plan adaptation begins when 1. a partial plan is obtained, either directly from a goal statement.
from an initial case fitting. or from ongoing adaptation processes. 2. An intermediate goal statement is
extracted from the plan, consisting of the initial conditions known to be true in the world and the set of
preconditions not yet satisfied in the plan. 3. The case library is searched for a matching plan in exactl\
the same way that it is searched for initial case fittings. 4. The best matching plan is retrieved and 5. iP
adjusted to have the right set of initial and goal conditions and to remove extraneous plan steps. 6. The
steps are recursively spliced into the plan, beginning with the links that match to the intermediate goal
statement and then moving backwards through the plan along the paths of the causal links. 0. Finall\. the
successfully spliced plans are returned for further adaptation or splicing.

Just like the original goal statement, the intermediate goal statement can be used to retrieve and fit
a partial plan. However, the result of this process is not a complete fitted plan suitable for
adaptation; it is a plan clipping that satisfies some or all of the open conditions of the partial plan
from which the intermediate goal statement was derived. To take advantage of the plan clipping
for adaptation, it must be spliced into the original partial plan. Together, plan clipping and splicing
form MPA's integration mechanism for incorporating new plans into the current reasoning
context (Figure 3).

Our splicing mechanism uses the intermediate goal statement to produce a mapping between the
partial plan and the plan clipping, pairing open conditions from the partial plan with satisfied goal
conditions from the plan clipping. The plan splicer uses this mapping to perform a guided
refinement of the original partial plan, selecting goal conditions from the clipping and using the
links and steps that satisfied them as templates to instantiate similar steps and links in the original
plan. As these steps are added, new mappings are established between open conditions in the new
steps and satisfied preconditions in the clipping and are added to the queue of mappings that the
splicer is processing. Hence, the plan splicer performs a backwards breadth-first search through
the causal structure of the plan clipping, using links and steps in the clipping to guide the
instantiation of links and steps in the original plan. Figure 4 briefly outlines the MPA algorithm.
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Input: A partial plan P, and a case library C.
Output: A new partial plan P'.

procedure MPA (P, C):
1 P' -- Copy-Plan(P)
2. igs -- GetlntermediateGoalStatement(P')
3. plan +- RetrieveBestPlan (C, igs)
4. {clipping, mapping) -- FitPlan (plan, igs)
5. for cgp in mapping do
6. if Producer-Exists (oc-gl-pair, P')
7. then Splice-Link (oc-gl-pair, P', clipping)
8. else Splice-Step (oc-gl-pair, P', clipping)
9. AddNewOpenCond-GoalPairs(mapping, P')
10. return P'

Figure 4. The MPA Algorithm

43. Controlling Multi-Plan Adaptation

Merely having the ability to splice plans together does not allow us to take advantage of past
experience. We need to decide what experiences to combine and when to combine them. Because
the MPA algorithm can potentially be performed at any point during the adaptation process -

using an initial skeletal plan derived from the initial and goal statement, using a fitted plan derived
from retrieval, or using an adapted plan after some arbitrary amount of retraction and refinement
- we have considerable flexibility in deciding what to retrieve, when to retrieve it and when to
merge it.

We have considered three alternative control regimes, each of which makes different
commitments about when to retrieve and when to adapt. On one end of the spectrum. Systenzatic
MPA preserves SPA's property of systematicity by splicing all retrieved cases before (generative)
adaptation begins. On the other, Extreme MPA never performs generative adaptation and instead
uses a set of pivotal cases (Smyth & Keane, 1995) to guarantee completeness.

Both Systematic and Extreme MPA make extreme commitments: either integrate all knowledge
before generative adaptation begins, or never generatively adapt and rely solely on past
experience. An alternative approach is to allow plan splicing at any point during adaptation. In the
middle stands Interactive MPA, a control regime that can potentially attempt a retrieval at any
time, either with the initial skeletal plan or with partial plans produced as a result of adaptation.
Since the results of splicing cause large jumps in the search space, this regime deliberately departs
from the systematicity of SNLP and SPA in an attempt to solve the problem with less search.

However, allowing arbitrary plan retrieval and plan splicing is not without cost. Performing a full
search of the system's case library at every step of the problem space could be computationally
prohibitive. The costs of searching the case library at every step of the problem space could
outweigh the benefits of reduced search, especially if the system enters a "slump" - an
adaptation episode which begins and ends with the application of relevant clippings, but which
goes through a series of intermediate plans for which the system cannot match any existing plans
in its case library. Clearly, it is worthwhile to retrieve and apply clippings at the beginning and end
of a slump, but a full search of the case library at each intermediate step could cost more than the
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benefits that the initial and final retrievals provide. This is the swamping utility problem - the
benefits of case retrieval can be outweighed by the costs of that retrieval, leading to an overall
degradation in performance as a result of case learning (Francis & Ram, 1995).

4.4. Interactive Multi-Plan Adaptation

Developing heuristics for deciding when and when not to retrieve is a challenging open problem.
The experience-based agency theory suggests that plan adaptation should be driven by retrieval;
to test this theory, we have implemented an Interactive MPA system within a specially configured
version of NICOLE, called NICOLE-MPA.

NIcoLE-MPA is an instantiation of NICOLE in which all of MPA's temporary data structures are
implemented using NICOLE blackboards. Case adaptation, intermediate goal statement generation,
plan clipping, and plan splicing are all implented as NICOLE task modules, which run in parallel
with the memory module and other modules of the NICOLE system. Because of this parallelism,
NICOLE-MPA can potentially attempt a retrieval at any time, either with the initial skeletal plan or
with partial plans produced as a result of adaptation. To support this retrieval, goals, plans and
intermediate goal statements are augmented with plan tags, which allow the smooth integration of
traditional least-commitment planning structures with the richly interconnected semantic network
which makes up NICOLE-MPA's experience store. The plan tagging mechanism allows NICOLE-
MPA to manipulate intermediate goal statements, plans and goals in a completely native fashion
while providing the memory system with the cues necessary to continue to refine retrieval.

A typical problem-solving session in NICOLE-MPA begins with the presentation of a problem.
From this problem, NICOLE-MPA generates a goal statement and uses the goal statement to post
a retrieval request. If some partially matching case can be found, the system returns it as its
current best guess; however, the retrieval request remains active. As the system adapts the plan
(using a specially "wrapped" and modified version of the SPA algorithm incorporated into a
NICOLE task module), it generates plan tags for each partial plan it generates, providing additional
cues for the memory module to attempt further retrievals. When memory finds a new past case
whose degree of match exceeds a certain threshold, NICOLE-MPA's metacontroller allows
memory to return it as a new guess. If it is applicable, the metacontroller may schedule the plan
splicing module, which will integrate it into the current partial plan.

45. The Beneits of Multi-Plan Adaptation

Both adapting a single partial plan and adapting merged partial plans can produce significant
benefits over generative problem solving. The cost of generative planning is exponential in the
size of the final plan produced, whereas fitting a plan is a linear operation in the size of the plan.
Hence, the potential exists for substantial improvement through retrieval and adaptation if an
appropriate past plan exists, especially for large plans. In certain domains, SPA has demonstrated
significant improvements over generative planning. However, if large gaps exist in the retrieved
partial plan, SPA must resort to adaptation, which, like generative problem solving, has an
exponential cost in the number of steps that need to be added.

While this amount of adaptation may be a significant improvement over complete from-scratch
problem solving, the potential exists to reduce that even further by using MPA to clip and splice
more partial plans. Fitting a clipping and splicing a clipping are linear operations in the size of the
plan being spliced. Hence, the potential exists for substantial improvement through plan merging if
an appropriate past plan exists, especially if the gaps in the existing plan are large. An initial
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implementation of MPA for a test domain indicated significant speedups (beginning at 30%) over
SPA for even the smallest examples (solution size of the final plan = 5 steps).

5. Related Work
There are wide bodies of work on both least-commitment planning and case-based reasoning. The
most relevant example of that work to this research is of course SPA, upon which MPA builds.
Other similar plan reuse systems include PRIAR (Kambhampati & Hendler 1992) an SPA-like
system based on NONLIN, and XII (Golden et al 1994), an SPA-like system that plans with
incomplete information. Hanks and Weld (1995) discuss these and other plan reuse systems from
the perspective of the SPA framework.

MPA's plan splicing mechanism is in many ways similar to DERSNLP (Ihrig & Kambhampati
1994), a derivational analogy system built on top of SNLP that uses eager replay to guide a
partial order planner. While DERSNLP's eager replay mechanism is in some ways similar to a
limiting case of Systematic MPA in which a single plan is retrieved and spliced into a skeletal plan
derived from an initial problem statement, DERSNLP goes beyond SPA's reason mechanism and
includes a full derivational trace of problem solving in its cases. While DERSNLP and its
extension DERSNLP-EBL focus on when it is profitable to retrieve a partial plan, unlike NICOLE-
MPA they do not provide the capability of interrupting adaptation as a result of an asynchronous
memory retrieval, nor do they provide the ability to integrate the results of multiple plans.

Combining multiple plans in case-based reasoning is not a new idea. The PRODIGY/ANALOGY
system (Veloso 1994; Chapter 8, this volume) can retrieve and merge the results of an arbitrary
number of totally ordered plans during the derivational analogy process. However, because
PRODIGY/ANALOGY manipulates and stores totally ordered plans, it runs into significant issues
on deciding how to interleave steps (Veloso, 1994, p124-127), an issue MPA avoids because of
its least-commitment heritage. Furthermore, PRODIGY/ANALOGY deliberately limits its
capability to retrieve and combine cases on the fly in an attempt to reduce retrieval costs.

The ROUTER path-planning system (Goel et al., 1994) has the ability to recursively call its case-
based methods to fill in gaps in a planned route when no exactly matching case can be found.
(PRODIGY/ANALOGY has a similar capability to call itself recursively, although the full
implications of this ability have not yet been explored). Like NICOLE-MPA, ROUTER has the
ability to combine multiple cases, although only in a synchronous fashion because its memory does
not support spontaneous retrieval. However, each of these cases must be complete cases; it does
not have the ability to clip out the relevant portion of a case at retrieval time. ROUTER does have
the ability to break a case up into subcases at storage time, but the results show that
computational costs of this storage computation outweigh the benefits in improved retrievals
(Goel et al. 1994, p. 63).

The JULIA system (Hinrichs 1992) also has the ability to combine pieces of several past cases.
but this is largely a domain-dependent algorithm for merging declarative structures, rather than a
domain independent planning system. The CELIA system (Redmond 1990, 1992) stores cases as
separate snippets, case subcomponents organized around a single goal or set of conjunctive goals.
Snippets provide CELIA with the ability to retrieve and identify relevant subparts of a past case
based on the system's current goals. Note that while snippets are superficially similar to plan
clippings, plan clippings are constructed dynamically during problem solving, whereas snippets
need to be computed and stored in advance.
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Clippings are similar to macro operators (Fikes et al. 1972) in that they use past experience to
combine several problem solving steps into a single structure that can be applied as a unit,
allowing the system to make large jumps in the problem space and avoid unnecessary search.
However, macro operators differ from clippings in two important ways. First, macro operators
are traditionally precomputed at storage time, whereas clippings are computed dynamically;
second, macro operators are fixed sequences of operators, whereas clippings are partially ordered
sets of operators that may be resolved in a wide variety of ways in the final plan.

Kambhampati & Chen (1993) built and compared several systems that retrieve partially ordered
case-like "macro operators". They demonstrated that least-commitment planners could take
greater advantage of past experience than totally-ordered planners because of their ability to
efficiently interleave new steps into these "macro-operators" during planning. While this work
focuses primarily on interleaving new steps into single past plans, the explanations the authors
advance for the efficiency gains they detected could be extended to suggest that least-commitment
planners would be superior to totally-ordered planners when interleaving multiple plans. The
NIcoLE-MPA system should provide us a testbed with which we can empirically evaluate this
hypothesis.

6. Conclusion
We have presented the Multi-Plan Adaptor. an algorithm that allows a case-based least-
commitment planner to take advantage of the benefits of several past experiences. MPA provides
the ability to retrieve and merge dynamically selected case components at any point during the
adaptation process by extracting an intermediate goal statements from a partial plan, using the
intermediate goal statement to retrieve and clip a past plan to the partial plan, and then splicing
the clipping into the original partial plan.

Multi-plan adaptation has the potential for substantial speedup over single-plan adaptation. but in
order for those benefits to be realized MPA must be embedded within a control regime that
decides when the system attempts a retrieval, when the system merges, and when the system
resorts to adaptation. We have used the NICOLE multistrategy reasoning system to implement an
interactive control regime in which cases may be retrieved at any point during adaptation. To cope
with the potentially swamping cost of retrieval at every adaptation step, NICOLE-MPA employs an
asychronous, resource-bounded memory module that retrieves a "best guess" and then continues
to monitor the progress of adaptation, returning a new or better retrieval as soon as it is found.

We believe that the ability to combine multiple plans and the ability to perform asynchronous
retrievals form integral parts of any complete agent that functions in a complex domain:
moreover, actually implementing these capabilities in an efficient and sensible way can only be
done by considering the architecture of a complete agent. Combined with a metacontroller
sufficient to make them work together, multi-plan adaptation and asynchronous retrieval form the
cornerstone of our theory of experience-based agency, a theory of how an agent could take
maximum advantage of its past experiences to cope with the problems of the real world.
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